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Abstract

This thesis presents new techniques which enable the automatic recognition of everyday
objects like chairs and ladders in images of highly cluttered scenes. Given an image, we
extract information about the shape and texture properties present in small patches of the
image and use that information to identify parts of the objects we are interested in. We then
assemble those parts into overall hypotheses about what objects are present in the image,
and where they are. Solving this problem in a general setting is one of the central problems
in computer vision, as doing so would have an immediate impact on a far-reaching set of
applications in medicine, surveillance, manufacturing, robotics, and other areas.

The central theme of this work is that formulating object recognition as a discrimination
problem can ease the burden of system design. In particular, we show that thinking of
recognition in terms of discriminating between objects and clutter, rather than separately
modeling the appearances of objects and clutter, can simplify the processes of extracting
information from the image and identifying which parts of the image correspond with parts
of objects.

The bulk of this thesis is concerned with recognizing “wiry” objects in highly-cluttered
images; an example problem is finding ladders in images of a messy warehouse space.
Wiry objects are distinguished by a prevalence of very thin, elongated, stick-like com-
ponents; examples include tables, chairs, bicycles, and desk lamps. They are difficult to
recognize because they tend to lack distinctive color or texture characteristics and their ap-
pearance is not easy to describe succinctly in terms of rectangular patches of image pixels.
Here, we present a set of algorithms which extends current capabilities to find wiry objects
in highly cluttered images across changes in the clutter and object pose. Specifically, we
present discrimination-centered techniques for extracting shape features from portions of
images, classifying those features as belonging to an object of interest or not, and aggre-
gating found object parts together into overall instances of objects. Moreover, we present
a suite of experiments on real, wiry objects– a chair, cart, ladder, and stool respectively–
which substantiates the utility of these methods and explores their behavior.

The second part of the thesis presents a technique for extracting texture features from
images in such a way that features from objects of interest are both well-clustered with
each other and well-separated from the features from clutter. We present an optimization
framework for automatically combining existing texture features into features that discrim-
inate well, thus simplifying the process of tuning the parameters of the feature extraction
process. This approach is substantiated in recognition experiments on real objects in real,
cluttered images.
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Chapter 1

Introduction

This thesis is concerned with object recognition, broadly defined as the problem of detect-

ing the presence and characteristics of physical objects in still photographs or video. Long

considered one of the central problem areas in computer vision, object recognition sum-

marizes one important aspect of the long-term goal of the field: the automated, intelligent

summary by computers of the contents of images.

In this thesis we present computational techniques for detecting objects in images based

on their shape and appearance. Figure 1.1 represents the subject matter of this work pic-

torially: presented with an image containing objects like ladders, carts, and chairs (left

column), we want a computer program to analyze the image and report to us the locations

of those objects in the image (right column). We present two techniques here which are

designed to be applied to two distinct types of objects. Chapters 3 through 6 focus on tech-

niques for recognizing objects that have limbs, holes, and long, thin components (like those

in Figure 1.1). Chapter 7, on the other hand, is more concerned with recognizing objects

that are “filled in” like the mug in Figure 1.2.

The main contribution of the thesis is a method for finding “wiry” objects– objects

with thin wire-like structures like chair legs– based on the shapes they form in the image.

The problem of finding wiry objects in cluttered scenes has challenged object recognition

systems in the past, mainly because building representations of how wiry objects appear

across a wide range of imaging conditions is difficult. In particular, many successful object

recognizers have been built which represent the appearances of objects in terms of collec-

tions of one or more large rectangular image patches (for example [104][118]), but the thin,

linear components of wiry objects do not usually fill up rectangular regions of the image.
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Moreover, in previous attempts at representing objects based on their shape (e.g. [64]),

the simple geometric characteristics used to describe the objects are difficult to distinguish

from the geometric characteristics of clutter objects. Here, our central contribution is a

technique for shape-based object recognition which constructs rich, informative image fea-

tures discriminatively– that is, rather than focus on modeling the appearance of the wiry

objects, we concentrate on modeling the differences between the appearance of wiry ob-

jects and the appearance of objects in the background. We demonstrate that our approach

enables the recognition of complex-shaped objects appearing at arbitrary orientations in

complicated scenes.

Over the past forty years, researchers have spent considerable effort exploring various

aspects of object recognition. To place this work into the context of the overall field, Section

1.1 develops a taxonomy of object recognition research in terms of four broad criteria,

and describes the work in this thesis in terms of the taxonomy. Subsequently, Section 1.2

presents a specific recognition paradigm, called bottom-up localization, which we follow

in this document, and spells out the contributions we make to the field in terms of the

paradigm. Section 1.3 briefly reviews some of the applications of object recognition to

real-world problems.

Then, Chapter 2 explores in more detail the prior recognition techniques most closely

related to ours. Chapters 3 through 6 deal with a new technique for recognizing wiry ob-

jects in images based on shape. The basic algorithm is in Chapter 3; Chapter 4 presents

extensions to enhance its usefulness; and 5 reports the results of a set of quantitative ex-

periments evaluating various aspects of our approach. Chapter 6 discusses some of the

limitations of the approach, future research directions, and related work. In Chapter 7 we

propose a technique for recognizing objects based on their appearance properties, and show

a set of experiments which validate its usefulness.

1.1 A Taxonomy Of Object Recognition Research

A large body of work has been published on the overall problem of detecting and describing

objects in images. A panoply of objects, from car parts to skyscrapers, have been detected,

and a wide variety of symbolic and numerical computation techniques have been employed

to reason about how those objects appear. Unfortunately, however, very little exists in

the way of a concise, structured vocabulary according to which previous work on object

recognition can be delineated. In this section, we present four basic criteria which we feel
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Figure 1.1: This document presents approaches to bottom-up localization, three examples of which are shown in this figure. Left to
right: input images, detected edges, part classification results, and aggregation.

capture the most important characteristics of previous object recognition algorithms, and

by which previous projects and papers can be the most clearly differentiated. The purpose

of this taxonomy is to provide a vocabulary which we employ in Section 1.2 to succinctly

describe the contributions of the thesis. Throughout this section, we will use the problem

of detecting chairs in images as a motivating example. The four criteria are:

• Problem Definition. A problem definition is a detailed description of which exact

quantities related to the objects the algorithm is required to estimate. For example,

the problem may be to determine whether images contain chairs, and additionally

determine what kinds of chairs they are– recliners, office chairs, etc. Or, the problem

may be defined as determining whether chairs are present, and what their relative

positions are with respect to the camera.

• Sources of Variability. Images of chairs taken at different times can look different

due to a variety of factors: moving the chairs and other objects around, turning lights

on or off, or changing the zoom on the camera can cause an image of a chair to

vary dramatically. Each algorithm makes different assumptions about which of these

sources of variability– object motion, lighting changes, and so on– are expected to

change the appearance of the objects and background over the set of all images.
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• Cues. Cues are the characteristics of the image which allow us to differentiate the

objects from the background. If the problem is to find a particularly brightly-colored

chair in an otherwise grey room, color may be a useful cue; likewise the chairs may

be identified based on their shape, patterns on the upholstery, the way light shines off

them, and so on.

• Methods. These are the computational strategies taken in the search for objects in

the image. One algorithm may first search the image for sections that look like legs,

armrests, and seats, and then reason about the configurations of these parts in order

to determine whether chairs are present; another algorithm may first look for large

areas of the image which appear vaguely chair-like, then examine each area in more

detail for evidence of chair parts.

In this thesis, we address the problem of detecting the presence of objects in images and

estimating their spatial extents in the images. The sources of variability we accommodate

are the poses of objects and the characteristics of the background of the image. We address

the use of shape and visual texture patterns as cues, and we take the former of the two

approaches listed under Methods above: that is, we first search for object components,

and then fuse these components into overall objects. The following sections describe each

of these criteria in more detail and give examples of how our work and some of the more

important prior approaches to object recognition address them. Our categorization of this

document and many previous papers in terms of the four criteria is shown in Table 1.1.

1.1.1 Problem Definitions

Suppose that a person with a large collection of images wishes to build an object recognition

system to identify the images containing chairs, and to describe certain properties of the

chairs that appear. One common way to think about this problem is to break it into a series

of three sub-problems. The first step is to identify the images which contain chairs; the

second is to examine each of those images to determine which portions of them contain the

chair, and which portions contain other objects or the background. The third step consists

of focusing on each image section containing a chair isolated from the background, and

estimating the orientation, make and model, or other desired properties of the chair.

Most prior work in object recognition focuses on providing solutions to one of the three

sub-problems. The first step, which we term detection, consists of identifying whether or

not a particular image contains a particular target object, regardless of where the object
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appears in the image or how much of the image it consumes. The second step, localiza-

tion, is the problem of determining which portions of a particular image are taken up by

target objects. For example, many localization algorithms identify rectangles of image pix-

els which circumscribe found target objects, while other algorithms report lists of pixels

which project onto the target objects. Finally, for property estimation the problem is to

determine physical properties of the target objects and the imaging process. Some exam-

ple chair properties to estimate include pose [5][117], make and model, and configuration,

i.e. whether the armrests are folded up or down. Other estimated properties include the

expression (happy, sad...) and identity [128] of human faces.

As illustrated in the chair example, it is possible to think of the three sub-problems as

successive modules in an overall system, instead of separate, isolated problems. However,

it is not necessary to apply each of the three steps individually to every object recognition

application; for example, it is common for human face detectors [104][118][3] to solve a

localization problem by searching for faces in each portion of each image, without first de-

tecting whether or not the image contains faces overall. For some applications, localization

and property estimation may not be important. For instance, a common problem in med-

ical image analysis is detecting which images contain target objects like tumors or other

anatomical abnormalities [51][85], regardless of what parts of the images they are in.

This thesis is concerned with solving localization problems. Given an image, we wish

to identify which sections of the image contains objects like chairs, ladders, and stools. In

other words, given input images like those in the left column of Figure 1.1, we wish to

obtain a result like the right column of Figure 1.1, in which the image has been annotated

with which portion contains the object. We do not assume that the images have been passed

through a detection phase, in other words we do not assume a priori that the image contains

any target objects.

1.1.2 Sources Of Variability

The appearances of chairs can vary dramatically from chair to chair and image to image.

The color, shape, and reflectance properties of a recliner will likely be very different from

those of a metal folding chair, for example, causing images of the two types of chairs to

differ significantly. Variability in appearance from image to image is the major obstacle

in the development of object recognition systems– indeed, to date, no object recognition

systems have been demonstrated which are able to detect and localize any and all of the

world’s chairs in arbitrary images. However, the designer of the chair-recognition system
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may know that his collection of images is limited in scope– perhaps he knows that most or

all of the chairs shown in the image collection are made of wood, or are in front of a blue

screen, or appear in front of any other objects in the scene. In turn, the system designer can

focus on accounting for high variability in some environmental factors like lighting, chair

shape, or chair pose, while assuming that other factors– in this case, material properties,

background clutter, or occlusion– are relatively constant.

Every object recognition algorithm makes simplifying assumptions about which factors

related to the viewing environment, objects, and imaging process are likely to vary from

image to image, and to what extent they are likely to vary. We refer to the factors that vary

significantly as the sources of variability which the algorithm is designed to account for. In

order to make incremental progress toward the long-term goal of recognizing a wide variety

of objects under a wide variety of viewing conditions, it is common to develop algorithms

which are able to accommodate certain sources of variability, and gradually generalize the

algorithm so that fewer and fewer factors of the viewing process are assumed constant. For

example, the single-pose face recognition algorithm in [8] is generalized to multiple poses

in [43].

A widely-addressed source of variability is what we will call object identity. When we

refer to object identity as a source of variability, we refer to the idea that the target “object”

is in fact an abstract class that includes several physical entities which share some common

characteristics. In the chair recognition example, if the image collection contains images

of many instances of the same make and model of chair, or even images of completely

different chairs, we would count object identity as one of the sources of variability for the

algorithm to cope with. Referring to object identity as a source of variability is somewhat

arbitrary; instead, it is possible to alternatively pose each instance or type of chair as its

own distinct target object. For this discussion, however, we choose to think of a single

target object, “the chair,” whose appearance varies from image to image due in part to the

fact that different instantiations of the chair are viewed. When object identity is a source

of variability, authors often refer to object recognition as “category” or “class” recognition

[34], since the notion of the target object generalizes to encompass multiple physical enti-

ties. Face recognition is another example application in which object identity is a source

of variability; the target object is the set of all human faces, and the property estimation

problem is to determine the identity [128].

In this thesis, the most important sources of variability are changes in the poses of ob-

jects, and changes in clutter. Specifically, we present algorithms for localization of objects
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like chairs and ladders that are allowed to rotate arbitrarily in the ground plane and translate

with respect to the camera between views. Objects in the background are allowed to change

positions between images as well. We assume that camera parameters and lighting do not

vary widely across all images. Also, we assume that the intrinsic properties like reflectance

characteristics and geometric structure of our target objects do not change between views,

and that their scale in the image does not vary significantly from view to view. In Chap-

ters 3 through 6 we assume that our objects give rise to a reliable set of intensity edges in

the image; in other words, edges in the image should correspond to occluding contours on

our target objects rather than lighting effects like specularities or shadows. Finally, for the

present work, identity is not a source of variability; that is, we seek to recognize specific

physical instances of ladders, chairs, etc.

1.1.3 Cues

If our chair recognizer is to have any hope of success, the chairs in the image collection

must be discriminable from other items in the images based on some set of characteris-

tics of the images. For example, if all of the chairs in the image collection are known to

have a pattern on the fabric– plaid, say– that distinguishes them from the rest of the en-

vironment, then searching for portions of images that look like the pattern is a reasonable

strategy for detecting and localizing the chairs. On the other hand, if the images contain

several different types of plaid objects, then plaid-like image patterns by themselves will

not be sufficient to distinguish chair images from non-chair images. In this case, additional

information extracted from the image– colors and shapes for example– may be useful to

discriminate chairs from non-chairs.

All approaches to object recognition are predicated on an assumption that the target ob-

jects are discriminable from each other and from the viewing environment based on some

set of image characteristics. We refer to these characteristics as visual cues. Researchers

have exploited a wide variety of visual cues for recognizing objects, and difficulties related

to cues remain central to object recognition research: these include efficiently represent-

ing cues like shape and texture in numerical entities called features, comparing cues from

different images, and determining what the useful cues are for a particular recognition task.

We focus on exploiting two cues for recognition: shape and visual texture. By “shape”

we are referring to the spatial configuration of image contours that represent the projections

of objects. We emphasize that we are not referring to shape in terms of the intrinsic geomet-

ric structure of objects; instead, shape is an image property generated jointly by geometric
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Figure 1.2: In Chapter 7, we address identifying parts of textured objects, like the mug. The rectangles represent numbered mug parts
identified by our algorithm.

structure and imaging parameters. For example, in Figure 1.1, bottom row, shape cues are

based on how the edges running along the legs, armrests, and other parts of the chair are

arranged in the image. In Chapters 3 through 6, we examine the edge configurations to

localize the target objects. The assumption is that the shapes that these edges form in chair

images are distinctive from the shapes formed by edges drawn from images of other items.

Other shape-based recognition methods of this variety include [9][72].

Visual texture, on the other hand, refers to distinctive image patterns, like plaid in the

above example. In Chapter 7 we assume that visual texture is distinctive on sections of the

objects we wish to localize, and we describe a procedure for detecting object parts based

on those textures (Figure 1.2). Other texture-based approaches include [102][10].

1.1.4 Methods

Once the problem definition and sources of variability have been determined, and the de-

signer has determined a set of visual cues which effectively discriminate chair images from

non-chair images, strategies for representing how images of chairs tend to look, and for ex-

ploring new images for those appearances, must be determined. We will use the term meth-

ods to refer to the general computational strategies followed by recognition algorithms.

There are many different ways to categorize algorithms according the methods they fol-

low. Here, we present three criteria which we feel are useful in delineating the important

methodological differences.

If the chairs are known to be plaid, it may make sense to search for chairs directly from

the image signal, for example by decomposing the image into its frequency components and

representing plaid images by distinctive characteristics (such as wavelet coefficients [96])

in the frequency domain. On the other hand, if the images of chairs are known to be well-

represented as pairs of adjacent uniformly-colored blobs (the back and seat) connected to
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four long, parallel lines below them (the legs), then a good approach may be to first search

the images for uniformly-colored blobs and groupings of lines, and then examine how those

blobs and lines are arranged [36]. Finally, if 3D models of the chairs are available, it may

be possible to determine whether chairs are present in an image by determining whether

there exists a 3D chair pose which would plausibly give rise to the image [46].

These three approaches illustrate what sorts of structures in the image or scene are de-

tected as intermediaries on the way toward detection, localization, and property estimation.

The first example is typical of direct methods which estimate no intermediary structures,

instead representing images of objects directly from low-level signal properties; the second

illustrates what we call perceptual organization techniques which estimate image struc-

tures like contours or coherent color regions; the third is a physical estimation approach

which estimates properties of the scene such as 3D shapes and illuminants. In Chapters

3 through 6 we present a shape-based recognition technique which can either be applied

directly to the image signal or can take advantage of estimated image contours. In Chapter

7, we present a direct method for localization based on efficient representation of the image

signal in textured regions.

Another way to categorize previous approaches to recognition is by how they organize

their search through the image for the target object. A bottom-up approach to chair localiza-

tion might first scan the image in a search for image regions which look like legs, armrests,

and seats, then aggregate the found parts into overall instances of chairs (as in, [19]); con-

versely a top-down approach would first scan the image at a coarse scale to identify large

image regions which look as though they may contain chairs, then examine those regions

in more detail for supporting evidence in the form of leg or armrest sub-regions [81]. Tech-

niques which search for the target object in its entirety with no notion of component object

parts we call single-step methods (for example, [82]); also, there are a few hybrid tech-

niques which alternate between top-down and bottom-up phases [129], or provide a frame-

work for fusing top-down and bottom-up algorithms together [126]. Top-down techniques

can be useful if it is possible to quickly discard large image regions that are dissimilar to

the target objects at a gross scale. Here, however, we focus on bottom-up methods in which

a first step identifies individual image patches which project onto the object, and a second

phase gathers these patches up into overall localizations of the object. The motivation for

using bottom-up techniques is that for the complex-shaped objects we wish to recognize,

it would be difficult for a top-down approach to efficiently discard object-sized sections of

the image based on its gross shape characteristics. The main focus of this document is on

the first phase of bottom-up recognition, namely identifying which pixels or patches be-
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long to the target object. However, in Section 4.2 we also present a hybrid technique which

alternates between pixel-level and object-level recognition processes.

A third major division among previous approaches to object recognition places gener-

ative techniques in one category and discriminative techniques in another. Cues extracted

from images are summarized in numerical form by features; example features include the

curvature of edges and the red, green, and blue components of color. A generative ap-

proach to chair recognition would formulate a statistical model which describes what sorts

of values the features drawn from the image take on, given that a chair is present there.

The parameters of this model can be estimated using example images of chairs [104] or

CAD models [109]; performing recognition in the large collection of images consists of

extracting the features and using the statistical model to infer the probability that chairs

are in particular image regions, given the features. An analogous statistical model can be

formulated which describes the probability of features taking on particular values in im-

age portions containing the background or other objects. Objects are detected wherever

the probability of chair is high, and the probability of background is low. Meanwhile, a

discriminative approach to chair recognition partitions the space of all feature values into

“chair” and “non-chair” categories. How to partition this space is determined by examining

example images or 3D models of chairs and non-chairs, and in order to determine whether

chairs are present in portions of novel images we extract features and determine whether

they fall into the chair or non-chair category (see, e.g. [87]). For a more general discussion

of the differences between generative and discriminative techniques, see [99].

This thesis is focused on discriminative methods for recognition. In particular, we fo-

cus on techniques for discriminating between target-object and non-target-object image

sections, based on shape and texture features drawn from those sections. We determine

the partitioning between the two categories of features by looking at features drawn from

example images whose pixels have been labeled as belonging to the target objects or back-

ground. We focus on localization in high-clutter scenes; therefore, we feel that formulating

recognition in terms of discriminating between object appearances and background appear-

ances is a more direct way of addressing the problem than developing separate generative

models for object and background classes.

To summarize, previous work in object recognition can be categorized according to

four criteria. The problem definition and sources of variability describe the major charac-

teristics of the problem to be solved, in terms of what questions to answer and what causes

the problem to be difficult. The cues and methods describe the solution to the problem,
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specifically the types of image information and computational methods used to arrive at a

solution. We categorize the work in this document, along with some of the more significant

prior approaches to recognition, in Table 1.1.

The focus of the work is on the estimation of image locations of objects across wide

changes in pose and backgrounds; variability in object instance, articulation, lighting, and

other properties are assumed small. We use bottom-up, discriminative techniques to lo-

calize the objects based on shape and visual texture. The algorithms developed here can

encompass stand-alone applications which use training images to determine the presence

and extent of objects in cluttered test images across wide changes in pose; or, as suggested

above, our algorithms may also be useful as a pre-processing step for procedures which

estimate physical properties like object pose.

1.2 Bottom-Up Localization

In this section we focus on bottom-up approaches to localization based on shape and texture

cues. Previous approaches of this variety can be organized in terms of three constituent

steps:

1. Feature extraction. As a first step, the image cues from each portion of the image

are represented in numerical form. In Figure 1.1, for example, the image features

could be numerical properties of the binary edges shown in the second column.

2. Part classification. Features from each portion of the image are classified as belong-

ing to the target object or the background; in Figure 1.1, third column, white pixels

represent sections of the image identified as a part of the ladder, cart, or chair. Addi-

tionally, this step may identify features with specific physical components of objects,

like the seat or legs of the chair.

3. Aggregation. Once individual image sections corresponding to parts of target objects

have been identified, these individual parts must be somehow joined together into

overall hypotheses about how many objects are in the image, and where. Thus, this

step would take the initial identifications of legs, armrests, and other chair parts and

assemble them into a conclusion that a chair is present at a particular location in the

image (Figure 1.1, fourth column).
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Chapter 2 discusses related approaches to bottom-up localization in detail. Most of

them can be well described in terms of local feature extraction, part classification, and

aggregation, although in many approaches, one or more of the steps are quite simple. In

this thesis, we present two types of bottom-up localization techniques: one focuses on

image features, part classification, and aggregation based on shape cues, and the other is

concerned with local extraction of texture features. Specifically, we present the following

contributions:

1. Cascade of Edge Probes – Chapter 3. Here, local feature extraction consists of

extracting binary edges, then representing local edge properties in terms of features

which measure local edge density. We use a cascade of decision trees to classify

these edge features as belonging to the target object or the background. Finally, fea-

tures identified with the target object are aggregated together by scanning the image

with an object-sized bounding box, and identifying overall instances of the object in

locations where the number of object features is high. The thrust of this approach is

on the representation and classification of the shape features.

2. Cascade of Edge Operator Probes – Chapter 4. Instead of image features based

on binary edges, we extract a set of continuous edge features directly from the raw

image. These features are classified using a cascade of decision trees, and parts are

aggregated using bounding boxes, as for the cascade of edge probes. The problem

of automatically selecting a set of edge features to use for image features makes this

modification of the cascade of edge probes challenging. Again, the main focus here

is on image features and part classification.

3. Aggregation-Sensitive Part Classifier Training – Chapter 4. Rather than process-

ing the images in a strictly bottom-up manner, we alternate between classifying indi-

vidual image parts and aggregating those parts into object instances using bounding

boxes. Image features are based on shape, part classifiers are decision trees, and ag-

gregation is based on scanning the image with a box; however, the part classification

and aggregation alternate at run time.

4. Discriminant filters – Chapter 7. Discriminant filters extract texture features from

patches in the image by projecting the patches into a low-dimensional space. The fea-

tures are then classified as belonging to the target object or background using nearest-

neighbor techniques or simple generative models. The focus of this approach is on
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determining the projection from the image patches to the low-dimensional space, so

we do not address aggregation here.

1.3 Applications

Applications of object recognition systems are spread across a wide range of areas includ-

ing manufacturing, medicine, robotics, and surveillance. However, these applications can

be placed roughly into categories according to the respective roles that the recognition sys-

tems and humans are expected to play.

In one set of applications, the object recognition system performs an estimation which

is used as the basis for planning the actions of a robot or other automated system; in other

words, the role of object recognition is to enable an automated task which does not involve

humans at all. An example system that falls under this category is the Schneiderman face

detector which has been incorporated into photograph developers in Europe[95]; once the

recognition system detects faces in the photograph, another module automatically locates

the eyes in the photograph and remove red-eye artifacts. Another prototypical recognition

system of this type is the first phase of a “bin-picker”: these systems estimate the poses

of industrial gadgets on assembly lines so that robotic manipulators can grasp and move

them[53]. A final example are “workhorse” robots; object recognition results based on

images from cameras on the robot are used to plan interactions between the robot and the

objects (for example, moving furniture from place to place) or to issue concise reports

on the state of the environment for surveillance purposes. The algorithms developed in this

thesis could be applicable in this context, for example to help robots determine the locations

of chairs, ladders, and other objects they are intended to interact with.

Another common application area is “image mining.” Here, the role of the object recog-

nition system is to quickly summarize the contents of a large number of images and then

present the summary to a human user for browsing. Common examples of applications

in this area include searching through a large corpus of images and using the contents of

the images to find those which contain objects with particular characteristics; this is com-

monly referred to as content-based image retrieval [116] and is exemplified by commercial

products such as the QBIC system by IBM[119]. Another application in this area is the

automated summary of surveillance video (see, for example, [23]); the role of the recogni-

tion system is to analyze hours of grainy video sequences and issue a concise report stating

changes in the location or other state of objects seen in the filmed environment. Finally, an
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emerging application in medicine is the use of recognition systems to both automatically

detect objects such as tumors in large sets of biomedical images [32] and discover regular-

ities among medical images which correspond to a particular medical condition[88]. The

chair recognition example running through this chapter is an example of how our work can

be applied to image mining applications; for example, our techniques can be used to detect

chairs in images and help users to find all the images in a large collection which contain

them.

A final set of object recognition applications involves neither a completely automated

loop between the recognition system and another automated system, nor a single-step pro-

cess of summarizing a large set of images for a human user, but instead an iterative loop

of estimating object properties in images, presenting the results to an end user, and receiv-

ing feedback so that the recognition results are tuned to the changing needs of the user.

The PicHunter system for image retrieval is an example system along these lines[20]. A

retrieval system presents the user with a set of images sharing some common visual cues;

the user provides the system with feedback as to which cues are relevant for his/her brows-

ing purposes and the system adjusts its retrieval procedure accordingly. In this setting, we

can imagine using our algorithms to present the user with initial guesses of where ladders,

chairs, etc are found in images, and having the user click on the objects that interest him/her

so that the parameters of our recognition system may be refined.

1.4 Conclusion

In summary, this thesis contributes discriminative, bottom-up and hybrid techniques which

enable the localization of objects in cluttered scenes based on their shape and texture. We

show bottom-up methods for shape-based localization in Chapters 3 and 4, as well as a

hybrid shape-based algorithm in Chapter 4 and a bottom-up technique for texture-based

localization in Chapter 7. The following chapters describe the algorithms, experiments

which substantiate their usefulness, and an explanation of how these techniques are related

to prior work.
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Approach problem definitions sources of variation cues methods references

Cascade Of Edge Probes localization pose, clutter shape bottom-up, perceptual orga-
nization, discriminative

Chapter 3

Cascade Of Edge Operator
Probes

localization pose, clutter shape bottom-up, direct, discrimi-
native

Chapter 4

Aggregation-Sensitive Part
Classification

localization pose, clutter shape hybrid, direct/ perceptual
organization, discriminative

Chapter 4

Discriminant Filters localization pose, clutter texture bottom-up, direct, discrimi-
native

Chapter 7

Local PCA localization pose, occlusion, clutter texture bottom-up, direct, generative [84] [56] [22]
PCA/Eigenfaces detection, localization pose, identity texture single-step, direct, generative [82] [80]
Schneiderman localization identity, clutter, pose, lighting texture top-down, direct, generative [104]
Viola-Jones localization identity, clutter, pose, lighting texture single-step, direct, discrimi-

native
[118] [68]

Shape Indexing properties pose, occlusion shape bottom-up, perceptual organi-
zation, generative

[64] [6] [106]

Interpretation Trees properties pose shape top-down, perceptual organi-
zation, generative

[46]

Local Filter Banks localization pose, occlusion, clutter texture bottom-up, direct, generative [10] [93]
Local Greylevel Invariants detection, localization pose, occlusion texture bottom-up, direct, generative [45] [60] [71]

[83] [100]
Receptive Field Histograms detection pose texture bottom-up, direct, generative [102]
SEEMORE detection pose, deformation texture, shape,

color
bottom-up, direct/perceptual
organization, discriminative

[78]

Probabilistic Contour Dis-
criminants

localization deformation, occlusion, clut-
ter

shape, texture top-down, perceptual organi-
zation, generative

[73] [74]

Data Driven MCMC localization occlusion, clutter shape hybrid, perceptual organiza-
tion, generative

[129]

Fisherfaces properties identity, lighting texture single-step, direct, discrimi-
native

[7]

Mohan localization identity, pose, clutter texture top-down, direct, discrimina-
tive

[81]

3D Shape Signatures properties pose, clutter shape bottom-up, physical, genera-
tive

[55]

Convolutional Neural Net-
works

properties deformation, clutter, identity shape single-step, direct, discrimi-
native

[66]

Illumination Cones properties lighting, identity, pose texture single-step, direct, generative [43] [8]
Li and Hornegger localization pose, clutter, occlusion shape bottom-up, perceptual organi-

zation, generative
[67]

Local Color Invariants localization lighting, pose, clutter, occlu-
sion

color bottom-up, direct, generative [110]

Boykov and Huttenlocher localization pose, clutter, occlusion shape bottom-up, perceptual organi-
zation, generative

[13]

Papageorgiou Et Al localization clutter, identity texture single-step, direct, discrimi-
native

[87]

Boosted Discriminants localization clutter, identity, pose texture top-down, direct, discrimina-
tive

[76]

Shape Contexts detection identity, deformation, pose shape bottom-up, perceptual organi-
zation, generative

[9]

Amit, Geman, Jedynak localization identity, deformation texture, con-
figuration

bottom-up, direct, discrimina-
tive

[3]

Body Plans localization identity, deformation, clutter texture, color,
configuration

bottom-up, perceptual organi-
zation, generative

[36]

Similarity Templates localization identity, clutter color single-step, direct, generative [111]
SIFT properties clutter, pose, occlusion texture bottom-up, direct, generative [71]
Primitive Grouping localization identity, clutter, occlusion,

pose
shape bottom-up, perceptual organi-

zation, generative
[72] [50] [37]

Table 1.1: Examples of prior approaches to object recognition, categorized according to the taxonomy in Section 1.1. The techniques
presented in this thesis are highlighted in the first four rows.
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Chapter 2

Related Work

As described in the introduction, this thesis is focused on methods for bottom-up localiza-

tion based on shape and texture cues. In this chapter we explain how our techniques fit

into the context of prior bottom-up approaches in terms of their constituent steps: feature

extraction, part classification, and aggregation. To facilitate this discussion, we begin by

stating each step in a more precise mathematical form:

• Feature extraction Feature extraction is the process of mapping image patches or

local groupings of line segments to a low-dimensional space. For many approaches,

feature extraction begins with extraction of a set of rectangular patches {P} from the

image, for example by scanning the image with a rectangular box. A function f then

maps each P to a low-dimensional vector v = f(P ). The vectors v are what we refer

to as the image features. In many texture-based approaches, f(P ) consists of raster-

scanning P into a vector p, and applying a linear transformation T to p. In many

edge-based techniques however, binary edges are first extracted from the image, and

the edges are clustered into local groupings, for example by searching for groups of

edges that are connected, parallel, or lie within a small image patch. A function f

then maps each local edge grouping to a low-dimensional space. For example, given

edges L, v = f(L) may contain entries summarizing the orientations or curvatures

of the edges in L.

• Part Classification Feature extraction results in a set of vectors {(v, b)} such that

b summarizes the image location of the patch or edge grouping corresponding to v

(for example, b could contain the coordinates of a bounding box around a patch).

The purpose of part classification is to label each of the vectors v, resulting in a
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new set {(b, l, w)}. Each label l corresponds to either a part of a target object or

to the background, and optionally w represents the confidence or score given to that

labeling. In some cases, the labels signify a specific physical part of the target object,

like the mouth or nose of a human face [19]; in other cases the labels are less specific,

signifying only that v corresponds to some (i.e. any) section of a target object, as

opposed to the background [56].

• Aggregation The aggregation step uses the set (b, l, w) of image locations, part la-

bels, and scores to produce a set of object instances {(o,θθθ)}, where each o is a label

indicating which target object is present, and θθθ is a vector of parameters indicating

the location of object o in the image. θθθ may consist of a list of all pixels which project

to the instance of o, the coordinates of a bounding box that circumscribes o, or some

other representation of overall object location. The aggregation step can generate

object instances by reasoning about how the parts are arranged spatially in the image

for instance.

Thus, the three chief characteristics that determine a bottom-up approach to localization

are the feature mapping f from image patches or edge groupings to a low-dimensional

vector space; the classification scheme for applying labels and scores to image features;

and the aggregation scheme for generating hypothesized object instances from the labeled

features. This document presents algorithms for these three steps based on edge and texture

information. In Chapters 3 through 6, features measure edge properties in local image

neighborhoods, part classification is accomplished using a series of decision trees, and

aggregation consists of collecting classified parts into rectangular image boxes. In Chapter

7, on the other hand, image features are discriminative measures of local texture, and the

choices of part classifiers and aggregation steps are left open. The rest of this chapter

describes how the techniques in this thesis relate to prior work in object recognition in

terms of these three steps.

Central to our analysis is the role of training data in designing the feature extraction,

part classification, and aggregation steps. That is, consider a set Pt = {(Pt, t)} of training

patches Pt drawn from example images, together with labels t which identify Pt with an

object part or background. Pt could be used to drive the design of the feature mapping

f . For example, f could be tuned to map example patches corresponding to different

parts to distinct features, in other words forcing d(f(Pa), f(Pb)) to be large for Pa and

Pb corresponding to distinct parts, under some distance metric d. Once a feature mapping

has been determined, the set {(vt, t)} can be employed in the design of the part classifier,
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namely by encouraging classifiers which label each f(Pt) with the correct t.

In some cases, training patches corresponding to parts of the target object are employed

to optimize one or more of the bottom-up steps, but training patches corresponding to the

background, i.e. the viewing environment or clutter objects, are not. Example images con-

taining clutter may be unavailable; for instance, images of target objects in isolation or 3D

models of isolated target objects may be the only source of data at hand during the training

process. However, our main point in this chapter is that when example images containing

both object and background are available at training time, both types of example patches–

those containing parts of target objects and those containing clutter– should drive the de-

sign of image features, part classifiers, and aggregation steps. In short, each step should

focus on discrimination between features, parts, and sets of parts belonging to objects and

clutter.

2.1 Feature Extraction

The task of determining the mapping f is often referred to as feature selection. In Chapter

3 we present a shape-based recognition technique in which we automatically determine a

set of shape features which discriminates between groupings of binary edges correspond-

ing to target objects and groupings of binary edges corresponding to background. Chapter

4 extends this approach to more expressive shape features extracted from the raw image.

Additionally, in Chapter 7 we present a technique for selecting features such that texture

patches from object and background are well discriminated. In this section we categorize

previous bottom-up approaches to shape-based and texture-based localization according to

their feature selection strategies. Our overall critique of prior work is that in most cases,

the criteria for determining good feature mappings are motivated by concerns other than

discrimination between parts of the target object and parts of the background. As a re-

sult, prior techniques can be prone to ambiguities between object features and background

features.

For some texture-based approaches, the chief criterion for choosing the feature map-

ping is good approximation of patches; that is, given a set {Pt} of example image patches

of parts of our target objects and background, the goal is to find a mapping f such that the

reconstruction error d(Pt, f
−1(f(Pt))) is minimized according to a distance metric d. Sev-

eral authors, including [22], [84], [104], and [56] propose the use of principal components

analysis (PCA) in this setting, so that f consists of a linear transformation of Pt, and d is
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the L2 norm. PCA can be a good way to approximate the appearances of image patches,

however for our application we are more interested in discriminating between sets of image

patches than reconstructing them. In particular, local PCA does not necessarily encourage

partitions between features corresponding to target objects and features corresponding to

the background. Specifically, suppose our set of example patches consists of two subsets,

{Pt+} and {Pt−}, where each Pt+ is an image patch that projects onto a target object, and

each Pt− maps onto the background. PCA features f(Pt+) and f(Pt−) may be accurate

low-dimensional approximations to Pt+ and Pt−, but PCA makes no attempt to ensure that

d(f(Pt+), f(Pt−),) is high, in other words that f(Pt+) and f(Pt−) are distinguishable from

each other. As a result, it is necessary to tune parameters– namely, the image patch size

and number of eigenvectors in the PCA projection– to ensure that features corresponding

to the object and background are not confused.

Instead of extracting features which approximate image patches well, other techniques

focus on extracting features which are invariant to class of transformations of the patches.

In other words, given a class T of image transformations such as rotations, scalings or

skews, invariant features are constructed such that for any image patch P , and any trans-

formation T ∈ T , f(P ) = f(T (P )). For example, texture features have been pre-

sented which are invariant to affine transformations [60][45][83][100][10], scalings [34],

and rigid body transformations [103]. Additionally, local affine-invariant edge-based fea-

tures are widespread in techniques based on matching local shape features, for example

[64][67][106][121][71]. Using invariant features can simplify the design of part classifiers

since the feature values are guaranteed to stay constant despite certain changes in view-

point. However, there is still no guarantee that invariant features extracted from portions

of the image corresponding to the target objects, and invariant features drawn from back-

ground portions of the image, will take on distinct values.

A third style of feature selection is to choose a feature mapping f so that the resulting

features are expressive and capture salient aspects of image regions, regardless of whether

the features reconstruct the image well or are invariant to transformations. For example,

shape contexts [9] are local edge-based features which measure the density of edge pixels

in image neighborhoods surrounding a pixel of interest. They are not strictly invariant to

any image transformations other than translations, and they are not designed to reconstruct

the edges in the image well, but they still capture salient local shape properties in terms

of how edges are distributed spatially. Similar arguments for rich shape descriptors which

lack invariance properties may be found in [6]. Responses to sets of Gabor filters [81][102]

or derivative-of-Gaussian filters [102][93] have been utilized as texture features, partially
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based on biological motivations, and partially based on the desirable signal properties of the

filters. Again, these features are not designed with discrimination as a design criterion, and

therefore their design parameters must be tuned to ensure that features drawn from images

of target objects are discriminable from features drawn from images of the background.

Finally, image features can be selected so that they optimize a discrimination crite-

rion; in other words, it is possible to choose f so that features corresponding to patches

or edges of distinct object parts or background are distinct from each other. Specifically,

consider a set {(Lt, t)} of local edge groupings Lt drawn from example images, together

with their part labels t. A discriminative approach to feature selection chooses f so that

given a distance metric d, d(f(La), f(Lb)) is high for distinct parts a and b. The motivation

for optimizing discriminative criteria during feature selection is to ensure that the feature

mapping does not essentially collapse image patches or edge groupings from distinct object

parts into identical or highly similar features.

In fact, feature mappings which optimize discrimination criteria are not common in

bottom-up object recognition. However, discrimination does drive feature selection in some

single-step and top-down texture-based methods. For example, convolutional neural net-

works [66][65] optimize the coefficients of convolution and downsampling operations so

that the outputs of these operations across different classes of images (for example, images

of different digits) are discriminated. Similar neural network architectures for single-step

localization [98] can be thought of as training the system to optimize the extraction of

texture features for discrimination purposes. Some single-step techniques use training pro-

cedures to find a linear discriminant which discriminates images of different target objects

from each other [7][87]. Other single-step detection methods use discriminative criteria to

drive the search for a set of vectors on which to project images for recognition purposes;

these vectors can be found one at a time [118][68][58] or all at once [70].

Discriminative selection of shape features is also not common. Martin et al [77] have

addressed the general problem of discriminating between edges corresponding to object

boundaries and other types of edges, but not in a recognition context.

Outside of object recognition, discriminative feature extraction has been described in

papers on texture discrimination [92][122] and image retrieval [114]. For example, Ran-

den and Husøy[92] optimize the coefficients of global linear filters so that maximizing the

separation of their responses to two textures becomes an eigenvalue problem similar to that

found in the formulation for discriminant filters in Chapter 7. However, some assumptions

about their texture discrimination scenario restrict the applicability of their approach to
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bottom-up localization. For example, Randen and Husøy assume that the texture patches

are separable autoregressive fields, while Weldon and Higgins[122] consider patches that

are well-modeled as a dominant sinusoid plus bandpass noise. In image retrieval, Vas-

concelos [114] selects local texture features which maximize a particular discrimination

criterion between different categories of images. However, to our knowledge, selecting

feature mappings which optimize discrimination criteria has not been presented in bottom-

up localization.

2.2 Part Classification

Part classifiers typically use a set of image features drawn from example images or 3D mod-

els to train a part classifier which labels features drawn from novel images. These classifiers

can be categorized as either generative or discriminative. The generative approaches use

the examples to estimate how image features corresponding to parts of target objects and

clutter are distributed in the feature space; that is, generative approaches attempt to approx-

imate the density function p(v, l) which gives the probability that a particular image feature

v co-occurs with part label l. Discriminative approaches partition the feature space into

sections corresponding to distinct parts and background. In other words, a function p(v) is

derived which returns the label corresponding to the partition that v lies in, and optionally a

confidence w in that categorization. Confronted with an image feature (v, b) drawn from a

novel image, generative approaches return a set {(b, p(v, l), w)} such that p(v, l) is high, or

such that likelihood ratios p(v, l)/p(v, a) are high for all a 6= l. Discriminative approaches

return {(b, p(v), w)}.

In this document, we advocate discriminative approaches for part classification; in

Chapter 3 we use recursive axis-parallel partitions of the feature space to categorize shape-

based image features as belonging to target objects or clutter. We prefer discriminative

techniques because they make fewer assumptions about how the feature values are dis-

tributed and generally lead to an easier estimation problem than generative approaches do.

In particular, generative techniques require the estimation of p(v, l) for all possible v and l.

The space of all (v, l) can be large, especially if v is high-dimensional, so in practice gener-

ative approaches assume that the feature values for each class are distributed according to a

specific functional form, and then estimate the parameters of that function. Discriminative

methods, on the other hand, only need to estimate a set of partitions to split the space of

all possible v into regions corresponding to a particular l. In practice, the number of par-
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titions needed to effectively split the space of v into coherent regions is often small. As a

consequence, estimating partitions of the feature space is often easier than determining a

functional form for p(v, l) and estimating its parameters.

Most prior approaches to part classification in bottom-up localization are generative

in nature. In particular, many of them represent the density function p using the training

examples themselves, and employ k-nearest-neighbor techniques to evaluate p(v, l) for a

novel image feature v. That is, the part classifier searches for a set of k training examples

{(vl, l)} for each label l such that d(v, vl) is low according to a metric d, and then combines

these distances in some way to arrive at p(v, l). “Voting” schemes can be thought of setting

p(v, l) to a constant c for all labels l for which d(v, vl) is low. Some of the many part

classification approaches which assign labels based on nearest neighbor criteria include

[10] [21] [103] [93] [106] [56] [84] [9] [64]. This technique is simple and widespread, and

it can often give good classification results in spite of its simplicity. However, the behavior

of these techniques is determined by the distance metric d; one that is poorly designed may

incorrectly assign high scores to labels whose training features are not highly similar to

image features seen at run time. Most previous researchers in object recognition set the

parameters of the distance metric arbitrarily, leaving them open to ambiguities between

parts. One exception is Mahamud [75], who recently proposed using training examples

to construct a distance measure d by linearly combining elementary distance measures

{d1, d2 · · ·} in such a way that ambiguity between features is reduced.

More elaborate parameterized models of p(v, l) have also been explored in the litera-

ture. For example, some researchers in bottom-up recognition [22] have suggested esti-

mating an interpolating surface between the various training features vl corresponding to

a particular part l, and measuring the distance between v and this surface as an estimate

for p(v, l) . Rikert et al [96] fit a mixture-of-Gaussian distribution to the image features.

Generally speaking it is difficult to estimate these models, and with interpolating surfaces

there is still the problem of how to determine a distance metric between new image features

and the model.

Discriminative part classifiers in bottom-up recognition are not as common. However,

they do appear in some top-down approaches. For example, Mohan [81] employs support

vector machines to discriminate between image features corresponding to distinct parts in

his top-down technique.
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2.3 Aggregation

Given a set of labeled image features, the aggregation step assembles the indicated parts

into overall instances of target objects. Previous approaches to aggregation may be cate-

gorized by how they reason about the spatial configurations of parts in the image in order

to put them together into instances of objects. In our shape-based localization techniques

(Chapters 3 to 6), we focus on aggregation tools which add up quantities of interest at pix-

els inside a bounding box, without considering how those pixels are distributed spatially.

As we explain in Section 3.5.5, we employ this simple approach to aggregation because it

is much faster to apply to images than techniques that reason about the 2D or 3D pose of

the target object. Furthermore, we wish to explore recognition scenarios in which detailed

knowledge of the 2D or 3D pose of the target object is not important for the application.

The simplest approach to aggregation is to not consider the spatial arrangements of

parts at all; especially in the case of detection tasks, it is common to simply add the scores

of all labeled image features (b, l, w) corresponding to parts l drawn from the same object,

and declare that the object is present somewhere in the image if the sum of scores, i.e. the

aggregate score, passes a threshold [56] [64][10][21][103][93][106][56][84]. It is difficult

to set this threshold properly so that true instances of objects produces aggregate scores

higher than the threshold and aggregate scores for false instances of objects fall below it.

Also, for simple shape features it has been shown that image noise can cause aggregate

scores for false instances to be virtually indistinguishable from those for true instances

[47]. We note that ignoring the spatial layout of identified object parts can lead to serious

errors during aggregation. For example, individual identifications of two eyes, a nose, and

a mouth will lead to a match for a face, even if the mouth is between the eyes and nose, the

right eye is to the left of the left eye, and so on. Falsely identified parts scattered randomly

in the background will generate false instances, even if those parts are not plausible in

concert.

Schmid et al [103] propose two heuristics to incorporate the geometric configurations

of parts into aggregation. First, labeled parts are discarded when they are nearby many

labeled parts belonging to other objects. Also, pairs of parts are discarded when image

gradients at their image locations are inconsistent with gradients in training patches for

those parts. The first heuristic does not help when false matches for many parts of the same

object are found in one area of the image. Also, the second heuristic is only useful when

false part matches occur at random orientations in the image plane, and when the gradient

is computed reliably.
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In contrast, Perona et al [19] [34] construct a probabilistic model of where parts should

be seen in relation to each other. The image positions of the set of parts corresponding

to a particular object are assumed to be distributed according to a multivariate Gaussian

distribution whose mean and covariance are estimated from training data. At run time, the

“shape likelihoods” of sets of labeled parts are determined by computing their joint proba-

bility with respect to the distribution, and sets of parts with high probability are indicated

as instances of the object. While this approach has been successfully applied to bottom-up

recognition of some objects, the main limitation is that it is intractable to accurately esti-

mate the distribution of part configurations when the number of parts is high. Also, since

this technique is not discriminative, there is no guarantee that the configurations of falsely-

identified parts among the background will be discriminable from the arrangements of true

parts.

Other authors have proposed different probabilistic models to constrain the spatial lay-

out of parts in the image. For example, several authors propose Markov models in which

the probability that a particular set of object parts is present at a particular location in the

image depends on how the parts are distributed over a Markov random field [67] [13] or

Markov chain [74] overlaid onto the image. Aggregation proceeds by inferring, via the

labeled object parts, high-probability arrangements of parts in the Markov model. Each

of these methods restrict how parts can be arranged in instances of objects, either forcing

them to lie on a parameterized family of curves [74] or constraining them to Euclidean [13]

or similarity [67] transformations of a rigid configuration of parts. Furthermore, [13] and

[67] are limited by computational concerns since they try to find the maximum a posteriori

part positions and configurations over the entire image at once; the optimization problem

in [67] in particular grows in complexity with the number of false part identifications.

Most top-down methods also restrict how parts are distributed in the image [104][81].

Here, a sliding window is passed over the image, and restricted sub-windows at each loca-

tion are searched for the parts. Constraining part locations to sub-windows speeds aggrega-

tion, and the reduced complexity helps to offset the cost of evaluating every image location

as a possible object location; however, it also means that objects can only be recognized

over a limited range of aspects. Typically, this limitation is overcome by designing different

recognizers for different poses; for example, we could slide one window over the image to

search for frontal faces, one for profile-view faces, etc. In our work, however, we wish to

formulate a unified algorithm to identify objects over all possible aspects in one pass.

In Chapter 3 we focus on feature extraction and part classification, and employ a simple
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aggregation step which scans the image with a bounding box, searching for regions of the

image with a large number of labeled object parts. This aggregation technique is clearly

sub-optimal but it is simple to implement and allows us to test our image features and part

classification techniques in the setting of an end-to-end system. Moreover, it begins to

address an area that is lacking in the literature: the bottom up localization– not detection or

property estimation– of objects based on edges.
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Chapter 3

Shape-Based Localization

In this chapter we address the problem of using shape cues to localize wiry objects under

significant variability in pose and clutter. More specifically, we address the localization

of objects such as the chair in Figure 3.1, which appears at an arbitrary orientation with

respect to the camera, and arbitrary translation along the ground in the direction parallel to

the viewing plane. Given an input image (Figure 3.1, first column), we extract binary edges

(Figure 3.1, second column) and use image features based on the local configurations of the

edges to determine which edge pixels belong to an instance of a target object, and which

edge pixels belong to clutter (Figure 3.1,third column). Once the edge pixels have been

classified, we aggregate the edge pixels on target objects into overall hypotheses about the

presence of the object by scanning the image with a box-shaped filter (Figure 3.1, fourth

column). Alternatively, the classified edge pixels may be provided as input for property

estimation procedures such as pose estimation[5][117]. Section 3.5.5 describes the aggre-

gation scheme; however, the bulk of this chapter is concerned with the preceding problems

of feature extraction and part classification in edge images. Specifically, we demonstrate

a shape-based algorithm which localizes complex objects appearing at an arbitrary out-of-

image-plane rotation in cluttered scenes. We show that our bottom-up approach enables us

to localize common, complex-shaped objects at a variety of poses among highly cluttered

backgrounds.
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Figure 3.1: This chapter is concerned with edge-based approaches to bottom-up localization of wiry objects. Three example results are
shown here. Left to right: input images, detected edges, part classification results, and aggregation.

3.1 Motivation : Wiry Objects

Over the past 10 years, significant progress has been made toward the recognition of real,

complex objects in cluttered scenes. There are now object recognition systems whose de-

tection and false alarm rates are encouraging for real-world applications; recently real-time

detectors with reasonable performance have even emerged[118][105]. The most common

target object searched for is the human face, but in principle these systems could be trained

to detect any of a variety of objects including cars and buildings.

Many of the approaches use single-step methods. In particular, they model the appear-

ance of a rectangular image patch circumscribing the object, across changes in pose [82],

lighting [8], or other conditions. This reduces the recognition problem to examining a spe-

cific rectangular image template and using the appearance of the template to decide whether

or not it surrounds an instance of the target object.

Since the problem is formulated in terms of rectangular image windows, single-step

appearance-based methods work well when applied to target objects whose projection into

the image fills a rectangular region. However, many objects produce images poorly ap-

proximated by rectangles; for objects such as the ladder, cart, and chair in Figure 3.2, their

bounding boxes in the image will contain a high percentage of pixels which map to the
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Figure 3.2: Examples of wiry objects.

background or other objects. Most successful recognition techniques can handle the varia-

tion in template appearance induced by a small number of background pixels in the image

patch. When most of the template consists of clutter, however, its appearance can vary

widely due to a modification of the background or object pose, making it difficult to detect

the object based on the entire template. This chapter focuses on the recognition of objects

like those in Figure 3.2; we will refer to them as wiry objects since they consist mainly of

elongated, thin stick-like components connected together to form complex structures.

As an alternative, several authors [10][22][63][106] have proposed bottom-up methods

based on the appearances of small patches covering parts of the object. This strategy may

be effective for some objects; consider, however, wiry objects such as the chair in Figure

3.2. Any patch larger than a few pixels across will intersect mainly clutter pixels when

placed over the legs or armrests, and it is doubtful that image patches a few pixels wide

will contain sufficient information to discriminate the appearance of the object from the

background.

Furthermore, many popular approaches to object recognition analyze the visual texture

patterns in candidate patches; thus they work well when the target object has significant

visual texture. Faces, cars, and buildings often possess this characteristic. But for the near-

monochrome objects in Figure 3.2, along with many other common objects, there is too

little appearance variation across the object surface to use texture as a cue for discrimi-

nation. Thus, while patch-based techniques are effective for some objects, we feel it is
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worth investigating the problem of bottom-up localization from alternative cues, especially

shape. Specifically, we employ discriminative machine learning techniques to boost the ef-

fectiveness of the shape-based recognition paradigm popular in the 1980s [46] to the point

of feasibility in high-clutter scenes under significant 3D pose variation.

3.2 Problem Statement

We assume that target objects are characterized by their shape properties, and that these

shape properties are reliably captured in the form of binary edges extracted from the ob-

ject as it appears in images. Therefore, our bottom-up approach to localization focuses on

identifying edges in the image corresponding to the target object. Our assumption is that

identifying the object edges will be sufficient for identifying the object as a whole. Specif-

ically, our bottom-up approach identifies individual edge pixels corresponding to target

objects, and assembles the identified pixels into overall instances of the objects.

More formally, let G denote a list of pixels q = [x, y] from a novel image I such that

an edge has been detected at I[q]. Our goal is to use G to recover a second list, O, which

contains only those edge pixels q ∈ G which correspond to points on an instance of a

particular target object of interest. In more detail, our objective function for this task is to

maximize tpp, the number of true positive pixels in O; and minimize fpp, the number of

false positive pixels in O. True positive pixels are edge pixels q ∈ O that project onto the

target object, and false positive pixels are q ∈ O that project onto the clutter. Object pixels

we accidentally fail to include in O we refer to as false negative pixels and background

pixels we (correctly) exclude from O are true negative pixels. False negative pixels and

false positive pixels are mistakes: they are the object pixels we accidentally classify as

background and the background pixels we accidentally classify as object, respectively. In

Section 3.5.4, we discuss the fact that the relative importance of the two kinds of mistakes

may vary from problem to problem, and we provide classification techniques based on

analysis of receiver operating characteristics to address this issue.

We reach our overall goal of localizing instances of the target objects using the object

edge pixels in O. Earlier approaches to bottom-up recognition from edge cues aligned

edges with detailed 2D or 3D object models in order to estimate pose or deformation of

objects (see, for example, [9][46]). Here, however, we assume that we have no access to

2D or 3D object models in advance, and therefore must use clustering techniques to group

the individual edge pixels into image regions corresponding to overall object instances. We
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Figure 3.3: Example training image for the cascade of edge probes. Edges on the target object are marked in blue, and edges on the
clutter are marked in green.

focus on localizing the object to rectangular image regions for speed and simplicity.

More formally, we aim to summarize the edge pixels in O into a list of object instances

{(o,θθθ)}, where each θθθ = [xbegin, xend, ybegin, yend] represents the top left and lower right

coordinates of a bounding box around an instance of the target object. Our only source of

training data is a set of images containing the target object in typical scenes, from which

edges have been extracted and labeled “object” or “clutter.” In other words, at training

time we are given a set of images {T}. Binary edges are detected in each training image

and the edge pixels are partitioned into two lists, TT+ and TT−, containing the object and

background edge pixels from T . Figure 3.3 shows an example training image.

As described in Chapter 2, a bottom-up solution to this problem proceeds by first break-

ing up the edges in G into a set {L} of local edge groupings, then classifying the edge

groupings to object parts based on features extracted from them, finally clustering the clas-

sified edge groupings together into overall object instances. Since our primary goal is to

determine which edge pixels are in O, we make one grouping Lq per edge pixel q ∈ G and

use the spatial configuration of edges in L to classify q as object or background. Specif-

ically, Lq contains q and all other edge pixels within a radius r from q. In the context of

classifying Lq, we refer to q as the query edge pixel, and the circle of the image containing
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Lq the aperture around q. Figure 3.6(a) shows an example image in which a query edge

pixel is marked with an “x”, and the black circle represents its aperture. Determining the

aperture size is an important problem in this framework; in Section 3.5.2 we provide a so-

lution in which we start with a small aperture and increase its size until q is identifiable as

object or background.

The training data does not specify which distinct parts of the target object the edge

pixels belong to; in the example of localizing chairs, this means that the set TT+ only lists

which edge pixels project to some (i.e. any) portion of the chair, without giving details

about which of them project to the legs, the seat, and so on. Thus, part classification

consists of a binary task of determining whether a particular local edge grouping is to

be identified as an anonymous portion of the target object, or as clutter. In other words,

part classification maps the set of image features {(v, b)} to triples {(b, l+, w)}, where l+

refers to the target object and w measures our confidence that the edges at b correspond to

l+. Since each vector of image features v corresponds to unique query edge pixel q, we

will later refer to a score image W , where W [q] = w if the part classifier returns a triple

(v, l+, w), f(Lq) = v, and W [q] = 0 otherwise.

3.3 Solution Overview

Here is a brief sketch of our algorithm in terms of the bottom-up localization steps:

• Feature Extraction The image features extracted from a local edge grouping Lq,

called edge probes, are measurements of the local edge density at fixed spatial offsets

with respect to q. The spatial offsets are spread over the aperture; they are represented

as “+” in Figure 3.6(a) for the q located at the “x.”

• Part Classification We employ a cascade of decision trees to classify the edge

probes. Successive classifiers compute edge density features over successively larger

areas of the image to identify query edge pixels as object or clutter. Figure 3.4 shows

an example of processing an image through several cascade phases, and Figure 3.5

depicts how each edge pixel is classified by decision trees in the cascade.

• Aggregation Once all edge pixels have been classified as object or clutter, we scan

the image with an aggregation filter, essentially a rectangle that searches for portions

of the image containing a high concentration of object edge pixels. If the number of
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(a) Phase 1 (b) Phase 5

(c) Phase 10 (d) Phase 15

Figure 3.4: Example recognition results at successive phases of the recognition cascade. The size of the aperture for each phase is
depicted by the circle at upper left. Edge points classified as “chair” are shown in white.
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Figure 3.5: An illustration of using image probes to classify an edge pixel. The point to be classified is shown in green; to classify the
point we evaluate the density of edges in sparse image locations (the circles).
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object edge pixels inside the rectangle surpasses a threshold for some image region,

we decide that an instance of the target object is in that region. Figure 3.1, fourth

column, shows example aggregation results, and Figure 3.9 illustrates an aggregation

filter applied to an image.

In other words, for each pixel on each edge, we examine a local edge grouping sur-

rounding it. How edges are arranged inside the aperture, termed the local edge configura-

tion for the pixel, is the cue used to determine whether the pixel belongs to the object or the

background. We train a classifier from example views to discriminate local edge configura-

tions of clutter edge pixels from those of object edge pixels. Unfortunately, if the aperture

is too small, the local edge configuration may be ambiguous; in other words, it might be

impossible to tell which class the edge point belongs to based on edge information inside

the aperture. For this reason, ambiguous edge points are passed on to a second classification

phase, which considers the local edge configuration in a larger aperture. If it is still unclear

at this stage whether the edge point belongs to the foreground or background, we attempt

to classify it based on features in a larger aperture, and so on. As an illustration, Figure 3.4

depicts four phases in this cascade process for the recognition of the chair in the lower left

portion of the image. Additionally, Figure 3.7 shows a block diagram of how images are

processed. We classify edge pixels based on a series of growing apertures, rather than one

large aperture, for efficiency reasons; that is, classifying edge pixels based on information

in larger apertures is computation-intensive, so we prefer to only spend that computation

on edge pixels that are ambiguous at that aperture size.

At each phase in the cascade, a decision tree computes a sparse set of localized image

features which measure edge density in some image neighborhood. The locations of the

image features are determined according to a tree structure which is learned at training time.

Figure 3.6(c) illustrates the classification of one edge point, at one classification phase.

We focus on part classification because a rich literature of prior research exists on aggre-

gation of individual edge pixels into overall object instances, for example [46][54]. These

techniques break down in high clutter, so an approach to part classification which effec-

tively isolates the object edge pixels from the background edge pixels would boost the

usefulness of these prior aggregation techniques.

Section 3.5 describes our algorithm in general. In Section 3.6 we present a set of ex-

periments which demonstrate the viability of the technique for the recognition of three ev-

eryday wiry objects. Additionally, Section 3.6 addresses concerns related to the sensitivity

and complexity of our algorithm.
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3.4 Assumptions and Capabilities

This section briefly summarizes the major assumptions that underlie our technique and the

capabilities it provides. First, we assume that it is possible to reliably detect binary edges

in the image which correspond to the geometric structure of our target objects. Specifi-

cally, this assumption implies that lighting and object material properties behave in such

a way that lighting-related edges (caused by specularities, highlights, and so on) are rare.

We further assume that we have access to many labeled training images (like Figure 3.3)

showing the target objects in a variety of poses. In terms of object pose, we assume that

object rotation in the plane of the image is small, and that variation in object scale over all

images is small. We note, however, that since our target objects are constrained by gravity

they will not generally appear at an arbitrary in-image-plane rotation. Also, we note that

it is possible to extend our technique to handle object scale variations either by processing

the same image repeatedly at a variety of scales [105] or by rectifying image features to a

canonical scale [71][34]. Since our approach heavily processes large amounts of training

data, we assume access to large amounts of memory and CPU time.

Our algorithm enables the localization of wiry objects at arbitrary out-of-image-plane

rotation in large amounts of clutter. Moreover, our algorithm is capable of localizing the tar-

get object despite deviations between training and run-time images in terms of arrangement

of the clutter objects, camera viewpoint, rotation of the target object, and (to a degree) the

room or environment the images were taken in. Finally, our technique requires the precise

estimation of few arbitrary parameters compared to previous approaches.

3.5 Approach

Our approach to edge filtering consists of training a cascade of classifiers which discrimi-

nates object edge pixels from background edge pixels based on local edge density features.

Section 3.5.1 defines the features used to train the classifiers, and Section 3.5.2 describes

how classifiers trained from these features are applied to the image in a cascade format.

Section 3.5.3 discusses the classifiers themselves.
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(a) Aperture and shifted probe centers (b) An edge probe

(c) Classification of a query edge point

Figure 3.6: Overview of one phase of the recognition cascade. 3.6(a) Edge probes are evaluated in an aperture surrounding a query edge
point. The query edge point is marked “X,” and edge probes are evaluated at locations marked “+.”3.6(b) Each edge probe measures
edge density in some image neighborhood. Here an edge probe is evaluated at shifted probe center q + δ. for a query edge point q.
3.6(c) Edge points are classified by evaluating edge probes according to a tree structure.
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3.5.1 Image Features: Edge Probes

As stated above, we assume that our objects are well-characterized by their shape prop-

erties, and that the shape properties are represented by binary edges extracted from the

image. For this reason, we classify each query edge pixel based on the values of edge fea-

tures which summarize the local shape in image neighborhoods in its immediate vicinity.

Specifically, an edge probe at probe center p over a list of edge pixels G is defined as

ep(p,G) =
∑

t∈G

exp

(

−
‖p − t‖2

σ2

)

where t and p are 2-vectors of [x, y] image coordinates. An edge probe can be thought of

as a Gaussian receptive field with variance σ2, centered at point p in an edge image whose

edge pixels are contained in G. Edge probes measure the density of edge pixels in some

neighborhood in the image; in this sense, each edge probe is analogous to a bin in a shape

context histogram [9]. The variance σ2 is a user-set parameter; however an experiment

reported in Section 3.6.4 suggests that our edge filtering results are not highly sensitive to

its setting. See Figure 3.6(b) for an illustration of an edge probe evaluated at probe center

q + δ.

Edge probes summarize the local shape in image neighborhoods in terms of the density

of edges in those neighborhoods. By computing edge probes at a set of image neighbor-

hoods surrounding a query edge pixel q, we summarize the overall shape properties of

the image near q, which should be a discriminating recognition cue for our shape-based

objects.

Specifically, for each query edge pixel q, we compute edge probes at probe centers in

the spatial neighborhood of q to classify it as object or clutter. Consider a set of relative

probe centers ∆ = {δδδ1, δδδ2, · · · , δδδk}, δδδi = [xδδδi
, yδδδi

], laid out over a 2D grid centered at

the origin. To classify q, we shift the relative probe centers so that they surround q, and

compute edge probes ep(q, ∆,G) = {ep(q + δδδ1,G), · · · , ep(q + δδδk,G)} at shifted probe

centers {q + δδδ1, · · · , q + δδδk} . An illustration is shown in Figure 3.6(a)-3.6(b).

Given a fixed σ, we space the relative probe centers at intervals of σ pixels so that they

evenly blanket a circular aperture as in Figure 3.6(a). We arrange the probe centers this

way so that every pixel in the aperture is able to contribute to edge probes evaluated at one

or more relative probe centers in a local neighborhood. But how large should the aperture

be? We want the shifted probe centers to cover a large enough neighborhood that the edge
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probes will contain sufficient information to discriminate object pixels from background

pixels. At the same time, however, if the aperture is too large, an intractable amount of

computation will be required at training time to evaluate edge probes that might not be

crucial for classification. Worse, if the aperture is so large that most of the edge probes

are totally irrelevant to the category of the query edge pixel, error-prone classifiers could

be trained[59][1]. Thus, we are presented with “the aperture problem” which appears in

many computer vision problems– when attempting to induce information about a particular

location in the image we want to incorporate image data from a large enough surrounding

area, but not so large that we introduce irrelevant data or useless computation.1

3.5.2 Part Classification: The Cascade

We solve our aperture problem in phases– we first identify those edge points whose class

is discriminable based on very nearby features, then identify points that are made discrim-

inable by features slightly farther away, and continue to do so until the aperture covers the

entire object in question. The overall objective for the cascade is to maximize the number

of true positive pixels and minimize the number of false positive pixels. As an illustration,

Figure 3.4 shows the results of classification at four phases of the cascade, and Figure 3.7

gives a block diagram showing the structure of the cascade.

In addition to providing a solution to our aperture problem, the classifier cascade allows

fast screening of edge pixels whose classification is easily determined based on information

in a small window, leaving the bulk of the computation to more ambiguous sections of the

image. Similar cascades have recently achieved significant speedups for template-based

approaches to recognition– see Section 6.2 for a discussion of them.

More formally, consider a set of relative probe centers ∆ which cover a circular aperture

as in Figure 3.6(a). Define r(∆) to be the radius of the circle. Our approach is to train a

series of classifiers {c1, c2, · · · , ck} which evaluate edge probes at sets of relative probe

centers {∆1, ∆2, · · · , ∆k} such that {r(∆1) < r(∆2), · · · , < r(∆k)} The first classifier in

the series, c1, is trained to classify edge pixels based on edge probes evaluated in a small

radius surrounding them; c2 classifies based on edge probes computed over a slightly larger

radius, and so on. Edge pixels labeled “object” by c1 are classified by c2; points labeled
1We emphasize that there is a critical distinction between the aperture of an edge point (denoted by the

black circle in Figure 3.6(a)) and the spatial support of a single edge probe (denoted by the gradient-shaded
region surrounding q + δδδ in Figure 3.6(b))– the aperture describes the image region over which all edge
features for a given query point are evaluated, while the portion of the image which contributes to a single
edge feature is determined by the edge probe support.
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Figure 3.7: A block diagram showing the organization of our one-sided classifier cascades as described in Section 3.5.2.

“background” by c1 are discarded. Edge points labeled “object” by c2 are passed to c3, and

so on. A block diagram of this cascade design is illustrated in Figure 3.7.

Note that our cascade removes edge pixels from consideration in a one-sided way;

that is, edge pixels labeled “clutter” with high confidence are removed from the cascade se-

quence, while all other edge pixels– including those labeled “object” with high confidence–

continue to be classified by subsequent phases. An alternative approach is a two-sided cas-

cade in which each phase places edge pixels into one of three categories: “object,” “clutter,”

and “uncertain.” The “uncertain” pixels are classified by future cascade phases; the “clut-

ter” edge pixels are discarded; and the “object” pixels are immediately added to the set O

of object edge pixels without being further classified by later cascade phases. Two-sided

cascades have the computational advantage of removing more edge pixels from classifica-

tion earlier on, since they remove both object and clutter edge pixels from consideration at

each phase. Most of the classifier cascades recently presented in the literature are one-sided

(for example, [118][68][125]); an example of a two-sided cascade is [69].

We build one-sided cascades for two reasons. One is that they are simpler to train; es-

sentially, training each phase in a one-sided cascade involves estimating a single threshold

between classifier scores for “object” and “clutter” pixels, while each phase in a two-sided

cascade requires the estimation of two thresholds which separate the the classifier scores

into the three categories (i.e., “object,” “clutter,” and “uncertain”). The second reason is

that we assume that the number of clutter edge pixels to be classified is extremely high

relative to the number of object edge pixels. This means that the computational burden of

repeatedly classifying object edge pixels by all cascade phases is insignificant relative to

the computation required to filter out the clutter edge pixels. Since object edge pixels are

relatively “rare events,” [125] we disregard the slight inefficiency of repeatedly classifying

them, and focus instead on filtering out the high number of clutter edge pixels.
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3.5.3 Part Classification: Decision Trees

We seek classifiers {c1, c2, · · · , ck} which compute a sparse set of edge probes over aper-

tures {∆1, ∆2, · · · , ∆k}. The classifiers assign each of the edge pixels in a set of training

images to object or background categories; the objective of the classifiers is to minimize the

number of false positive pixels, and maximize the number of true positive pixels, among

the training images. Our assumption is that classifiers that do so will generalize well. In

other words, we assume they will achieve high rates of true positive pixels and low rates of

false positive pixels when applied to novel views of the target object and backgrounds.

We choose decision tree classifiers [91] for their ability to quickly classify based on

small, sparse sets of features. A classifier c consists of a set of nodes connected in a tree

structure; each node represents the evaluation of an edge probe at some shifted probe center.

To classify a query edge point q ∈ G, we start at the root of the tree and evaluate ep(q +

δδδ1,G), where δδδ1 is the relative probe center associated with the root of the tree. Depending

on whether the value of the edge probe is greater or less than some threshold t1, we shift

to one or the other of the children of the root node, and evaluate edge probe ep(q + δδδ2,G)

where relative probe center δδδ2 is associated with the child. We move from node to node

based on the evaluation of edge probes until we encounter a leaf node. Associated with each

leaf node is a score w which represents the probability that the query edge pixel belongs to

the object. The part classifier returns the triple (q, l+, w). By setting a threshold on w, we

arrive at a binary decision about whether the image point is an object or background pixel.

In short, the application of a classifier to an edge pixel consists of a series of edge probes

whose probe centers are dependent on the structure of the tree. Figure 3.6(c) illustrates the

application of one classifier to one query edge pixel.

The training procedure for decision trees is a two-step process of tree generation and

pruning, following the reduced-error pruning approach of Quinlan [91]. In this framework,

the training data is split into two subsets, which we will refer to as the tree-growing set

and the holdout set. We use standard tree induction techniques to build a decision tree

with high classification accuracy on the tree-growing set; the score associated with each

leaf is estimated by counting the number of object edge pixels and background edge pixels

classified to the leaf. Then, subtrees are pruned from the tree when doing so improves a

performance criterion on the holdout set [91][14][16].

Section 3.5.4 discusses pruning. Tree induction, in more detail, works as follows. We

begin by considering all possible binary splits (t, δδδ1) of the training set into two categories

A and B such that ep(qa,Ga) < t < ep(qb,Gb)∀qa ∈ A, qb ∈ B. Several criteria exist for

55



assigning scores to splits based on how well they partition the training data into categories

containing high percentages of object and background pixels respectively (see, for example,

[62][18][79]). The split with the highest score is selected for the root of the tree; then, we

partitionA and B by high-scoring splits, and repeat the partitioning of the training examples

until no splits with high scores are available. Each leaf of the tree corresponds to a set S

of training examples, composed of a subset S+ of object edge pixels and a subset S− of

background edge pixels. The score assigned to the leaf represents the probability that an

edge pixel classified to that leaf corresponds to the target object. The score we assign to

the leaf is its Laplace-corrected empirical probability (|S+|+(c− 1))/(|S|+ c). We chose

this score following [14], which showed that for some problems using Laplace-corrected

scores led to higher classification performance than the empirical probability (|S+|)/(|S|).

Here, we choose c = 2 as in [14], however we note that it is possible to tune c for optimal

performance as in [127].

Rather than assign real-valued scores, it is more traditional for the tree induction pro-

cedure to have each leaf assign a binary classification to the edge pixels. For example,

early approaches to decision tree induction would label all edge pixels classified to a leaf

as “object” if (|S+| + (c − 1))/(|S| + c) > .5. However, our decision tree leaves assign

real-valued scores to allow for flexibility at pruning time. Specifically, our pruning proce-

dure described in Section 3.5.4 simultaneously removes subtrees from the decision tree and

selects a threshold t such that all leaves with scores (|S+|+ (c− 1))/(|S|+ c) > t classify

edge pixels as “object.” By modulating t and changing the topology of the tree, the pruning

procedure has greater flexibility in optimizing performance criteria than if it were only al-

lowed to change the tree topology. In other words, by postponing binary decisions at leaves

until pruning, we allow the pruning procedure to optimize the tree to greater performance.

We chose decision trees based primarily on two desirable qualities. The first is sparsity;

decision trees are capable of classifying examples based on a sparse set of features that are

selected by the training algorithm at each node. In practice (see Figures 3.14 and 3.15 for

example), we find that in most cases a small subset of the total number of possible edge

probes are evaluated in order to classify each pixel. The second desirable property is that

the framework for training decision trees consists of a discrete optimization framework of

adding and deleting sets of nodes. That is, we can phrase the problem of tuning the decision

tree to maximize a performance criterion in terms of adding or deleting nodes if doing so

increases the criterion. In Section 3.5.4, we grow decision trees so that they discriminate

between object and background edge pixels well, and then tune them by deleting nodes

when doing so increases a performance criterion related to the relative importance of false
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positive pixels and false negative pixels. In Section 4.2, however, we optimize the tree by

deleting nodes when doing so increases performance criteria related to overall instances of

target objects.

3.5.4 Part Classification: Pruning

As described above, our goal is to train the decision tree classifier to produce high rates

of true positive pixels and low rates of false positive pixels. However, as we describe

below, optimizing the decision tree often involves a tradeoff between false positives and

false negatives. In this section, we describe how to represent this tradeoff mathematically

as a receiver operating characteristic (ROC) curve, and how to tune decision trees based

on the characteristics of ROC curves.

ROC Curves

At run time, the decision tree processes each pixel q in the test image, yielding a triple

(b, l, w) with a real-valued score w. We arrive at a binary classification for the pixel by

thresholding w – if w is higher than a threshold t, q is classified as “object,” and if not it

is classified “background.” Some number of object edge pixels in the test image will have

classification scores higher than t; these are the true positive pixels for that classifier and

threshold setting. Object edge pixels with scores below the threshold are the false negative

pixels since they are falsely classified as background. Background edge pixels with scores

higher than the threshold are falsely assigned to the object so they are the false positive

pixels; background edge pixels with scores below the threshold are the true negative pixels.

Ideally, for a given classifier, we would be able to find a threshold t such that all of the

background edge pixels are rejected as clutter and all of the object edge pixels are assigned

to the object. That is, we want t < w for all object pixels q+ with scores (q+, l+, w),

and t > w for all background pixels q− with scores (q−, l−, w). Unfortunately, due to the

various sources of classifier training error– overfitting, ambiguity, weak features, noise–

the scores for object and background edge pixels usually overlap to some degree. Because

of this, different settings of the threshold t lead to different numbers of false negatives

and false positives. Usually setting t involves a tradeoff between false positives and false

negatives; for example, if t is set very high, the classifier will be very “selective” so that

very few background pixels will have scores w > t, meaning that there will be few false

positives. However, usually if t is very high there will be many object pixels with scores
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w < t, meaning the false negative rate will be high.

The ROC curve is a way to visualize the tradeoff between false positives and false

negatives for a particular classifier. An example is shown in Figure 3.8. Given a particular

test image (Figure 3.8(a)), we use a decision tree to assign a score (b, l, w) to each edge

pixel q (Figure 3.8(b)). Figure 3.8(c) shows a histogram of the scores {w+} for object

pixels (in blue) and a histogram of scores {w−} for background pixels (in red). Setting a

threshold for the classifier amounts to selecting a vertical line in the histogram at score t;

points represented in the bars to the left are classified as background, and points represented

in the bars to the right are classified as object. For each such threshold t, some number fp of

background pixels and some number tp of object pixels will lie to the right of the threshold,

or in other words have higher scores than t. The ROC curve plots the operating point

(fp, tp) for each possible setting of t. The green and red arrows in Figure 3.8(c) represent

two possible settings of t, and their corresponding operating points (fp, tp) are shown in

Figure 3.8(d). As such, the ROC curve represents all the possible ways that we can coax

the tradeoff between false positives and false negatives by setting the threshold. Figures

3.8(e) and 3.8(f) show which edge pixels have scores higher than the thresholds at the

green and red arrows, and illustrate the tradeoff between false positives and true positives

in the context of classifying pixels on the ladder. In the former case, most of the pixels

on the ladder are retained (i.e. the false negative rate is low) but most of the pixels among

the background are retained too (high false positive rate). In the latter case, most of the

background edge pixels are discarded (low false negative rate) but most of the ladder pixels

are thrown away as well (high false negative rate). ROC curves have historically been used

to represent this tradeoff in signal processing systems (see, for example, [26]), and more

recently the machine learning community has used them to analyze how classifiers perform

over a range of threshold settings [90][15].

ROC-based Pruning

Since ROC curves represent the tradeoff between false positives and false negatives over a

range of decision threshold settings, our pruning procedure aims to remove subtrees from

the decision tree whenever doing so improves a performance criterion called an ROC grad-

ing criterion assessed on the ROC curve. The ROC grading criterion reflects the relative

importance of false positives and false negatives, which may vary from application to ap-

plication. For this reason, our pruning framework is general enough to incorporate arbitrary

ROC grading criteria.

58



(a) Input edges (b) Raw pixel scores

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400
Histogram of pixel classification scores

Score

N
um

be
r 

O
f P

ix
el

s

object scores
background scores

(c) Histogram of scores

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC curve for pixel scores

Percentage of false positives

P
er

ce
nt

ag
e 

of
 tr

ue
 p

os
iti

ve
s

(d) ROC curve

(e) Pixels passing low threshold (f) Pixels passing higher threshold

Figure 3.8: An illustration of using ROC curves to represent classifier characteristics. Figure 3.8(a): An input edge image to be classified
by a pixel classifier. Figure 3.8(b): The pixel classifier assigns a continuous score to each edge pixel. Figure 3.8(c): A histogram of all
the scores assigned to edge pixels in the image. Red bars correspond to the number of background edge pixels receiving that score, and
blue bars represent object edge pixels. The green and red arrows represent two possible thresholds for the classifier: pixels with scores
higher than the threshold are classified as “object,” and pixels with lower scores are discarded. Figure 3.8(d): An ROC curve represents
the tradeoff between false positives and false negatives as the threshold is varied. An operating point (fp, tp) on the curve represents, for
a particular threshold, the percentage of background pixels fp above the threshold vs. percentage of object pixels tp above the threshold.
Each “X” represents the operating point for the corresponding threshold in Figure 3.8(c). Pixels whose scores are above the low (green)
threshold are shown in white in Figure 3.8(e), and pixels with scores above the higher (red) threshold are shown in white in Figure 3.8(f).
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Specifically, during pruning, we look at each sub-tree in turn and consider two different

classifiers: c1 consists of the full decision tree, and c2 consists of a modified tree in which

the current sub-tree has been replaced by a leaf node. We classify the holdout images with

each classifier and graph the tradeoff between false positives and false negatives for the two

classifiers as ROC curves r1 and r2. We represent the ROC curves as functions mapping fp

to tp. The ROC curves are then evaluated using an ROC grading criterion, grade, which

assigns a numerical score grade(r1) and grade(r2) to r1 and r2. If grade(r2) > grade(r1),

we remove the subtree from the tree; otherwise the tree stays unaltered. After pruning, we

invoke a threshold function t = h(r) which returns a decision threshold (or, equivalently,

an operating point) for the classifier. This process is summarized in Algorithm 1. Our

inductive bias is that the ROC curve for the holdout pixels will generalize well to novel test

images, so that a particular threshold t will lead to similar operating points on the holdout

and test images.

Algorithm 1 Algorithm for pruning a decision tree based on ROC curves.

Require: Set of labeled image features {(vl+ , l+)} and {(vl
−

, l−)}, classifier c, ROC grad-
ing criterion grade, ROC threshold function h.

1: for all Subtrees d of c do
2: cd = c \ d
3: Compute {c(vl+)} and {c(vl

−

)}
4: Compute {cd(vl+)} and {cd(vl

−

)}
5: r = roc{c(vl+)}, {c(vl

−

)}
6: rd = roc{cd(vl+)}, {cd(vl

−

)}
7: if grade(rd) ≥ grade(r) then
8: c = c \ d
9: end if

10: end for

11: Compute h(c)

As stated above, the ROC grading criterion and the threshold function reflect the per-

formance priorities of the application at hand in terms of false positives and false negatives.

Here, since the classifiers we train are modules in an overall cascade, our ROC grading cri-

terion encourages the classifiers to contribute to low false negative and false positive rates

for the cascade as a whole.

In particular, consider Figures 3.8(e) and 3.8(f), corresponding to the green and red

operating points in Figure 3.8(d), respectively. In the former case, the background pixels
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classified as “object” will be passed to further classifiers in the cascade, which may in turn

re-classify these pixels correctly. In the latter case, object pixels classified as “background”

will be discarded by the classifier and will not be reconsidered by later classifiers. In other

words, false positives are recoverable errors, and false negatives are irrecoverable, so false

negatives incur a much higher penalty than false positives. For this reason, our threshold

function selects operating points to encourage the lowest fp possible while constraining tp

to a fixed, high percentage θ of the number of object edge pixels. In so doing, we push

the classifier to make progress on the overall cascade goal of having few false positives

while constraining it to contribute as few errors as possible – false negatives – that later

cascade phases are unable to recover from. This strategy can be thought of as the converse

of a Neyman-Pearson criterion [25], which attempts to maximize tp given a fixed threshold

on fp. Furthermore, our ROC grading criterion is based on the same fixed detection rate

criterion; that is, if (fp, tp) is an operating point for our ROC curve, then the grading

criterion is inversely proportional to fp.

Setting the parameter θ requires assumptions about the expected number of phases in

the cascade and the expected difficulty in separating object edge pixels from background.

On one hand, setting θ < 1 allows the classifier to effectively “give up” on (1 − θ)% of

the most difficult object edge pixels in the holdout set, which gives the classifier a certain

amount of robustness to outliers. On the other hand, if the each classifier “gives up” on

(1 − θ)% of the object edge pixels in its training set, then after k cascade phases the true

positive rate of the overall cascade will be θk. Good values for θ require balancing the need

to discard difficult object edge pixels as false negatives, while trying not to degrade the

overall cascade true positive rate too much. In Section 4.3 we present two alternative ROC

grading criteria and one alternative threshold function.

The training and run-time behavior of our edge-filtering algorithm are summarized in

Algorithm 2 and Algorithm 3. Here, for a given set of edge lists G = {G1, · · · Gk}, c(G) =

{c(G1), · · · , c(Gk)}, and c(Gi) = {q ∈ Gi | c classifies q as ’object’}. Gi+ is the subset

of Gi containing object edge pixels extracted from the image and Gi− contains clutter edge

pixels.

For each edge pixel q in each image in the tree-growing set, we compute edge probes at

all shifted probe centers {q + δδδ1, · · · , q + δδδk} corresponding to the relative probe centers

{δδδ1, δδδ2, · · · , δδδk} in the smallest aperture ∆1. Decision tree induction then iteratively splits

the edge points into subsets according to the values of edge probes corresponding to se-

lected relative probe centers. Each edge pixel in the holdout set images is then classified by
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Algorithm 2 Pseudocode for the training procedure for recognition based on a cascade of edge probes.

Require: Edge lists G = {G}, sets of probe centers {∆}, θ, σ.
1: Split G into a tree-growing set T and a holdout set H.
2: Let FP = {q− ∈ T ∪ H}, TP = {q+ ∈ T ∪H}.
3: for all ∆ do // loop over cascade phases

4: for all Ti ∈ T do // loop over the tree-growing set
5: for all q+ ∈ Ti do // loop over object edge pixels
6: zq+

= ep(q+, ∆, Ti)
7: end for
8: for all q1 ∈ Ti do // loop over clutter edge pixels
9: zq

−

= ep(q−, ∆, Ti)
10: end for
11: end for

12: Train a decision tree c to discriminate {zq+
} from {zq

−

}

13: for all Hi ∈ H do // loop over the holdout set
14: for all q+ ∈ Hi do // loop over object edge pixels
15: zq+

= ep(q+, ∆,Hi)
16: end for
17: for all q− ∈ Hi do // loop over clutter edge pixels
18: zq

−

= ep(q−, ∆,Hi)
19: end for
20: end for

21: Prune c to minimize |c(H−)| such that |c(H+)| = (1 − θ) ∗ |H+|. See Algorithm 1.
22: if |c(H−)| < |H−| then
23: Add c to cascade C.
24: H = c(H), T = c(T ) // discard correctly classified background edge pixels
25: end if

26: end for
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the resulting tree, and subtrees are removed if the pruned tree reduces the number of back-

ground edge pixels classified as object edge pixels while keeping the percentage of object

edge pixels correctly classified to 1-θ. Edge pixels from the tree-growing and holdout sets

classified as object edge pixels by the pruned tree then pass to the training of the second

phase in the classifier cascade: for each of these edge pixels, edge probes are computed at

all shifted probe centers corresponding to relative probe centers in ∆2, and so on.

Given a test image, we apply the trained classifiers to each of its edge pixels in turn. An

edge pixel classified as “object” by the first classifier is passed to the second classifier; the

second classifier classifies the point again, and so on until the point is labeled as “clutter”

or the cascade ends.

Algorithm 3 Pseudocode for the run-time evaluation of a novel image based on a cascade of edge probes.

Require: List of edge pixels G
1: O = G
2: for all c ∈ C do // loop over classifiers in cascade
3: O = c(O) // discard background edge pixels
4: end for
5: Return O

3.5.5 Aggregation

To give an example of how filtered edge images may be used as an input to aggregation pro-

cesses, we implemented a simple filter called an aggregation filter which scans the filtered

edge image with a rectangular template roughly the size of the target object. At each image

location, the number of edge pixels falling inside the template is recorded, and image loca-

tions with a large number of edge pixels inside the template are noted as likely locations of

the target object.

The justification for this aggregation scheme is its simplicity at training and run time.

While aggregation filters do not reason about how the pixel scores are distributed spatially

(as in standard template-based approaches to recognition, for example [105]), they are ex-

tremely fast to apply at run-time since they sum over regions of the filtered edge image.

Furthermore, “training” an aggregation filter consists of estimating a single parameter: an

acceptance threshold t on the number of pixels inside the rectangle.

We first generate a rectangular template by computing the bounding boxes of object

edge pixels in each training image, and averaging the size of those bounding boxes. This
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(a) Input edges (b) Aggregation scores

Figure 3.9: An illustration of aggregation by adding the number of points in a box. The pixels marked in white in Figure 3.9(a) were
classified positively by the first phase of the classifier cascade. The red box depicts the size of the aggregation filter scanned over the
image. Figure 3.9(b) represents the aggregation scores for each image location. The intensity of each pixel represents the aggregation
filter score for a box whose upper lefthand corner is anchored at that pixel.

gives us a characteristic bounding box bθθθ = [bθθθwbθθθh] whose width b1w and height b1h repre-

sent the mean size of the object in the training images. Next, we run each training image

through the cascade of edge probes described above. Each training image results in a set

{(v, l+, w)} of features v identified with the target object. Alternatively, for each training

image, consider a binary image B such that B[q] = 1 if q is classified as belonging to the

object, and B[q] = 0 otherwise. We apply an aggregation filter to each location in these

binary images:

ag(bθθθ, q, B) =
∑

x∈[
−bθθθw

2
,
bθθθw
2

]

∑

y∈[
−bθθθh

2
,
bθθθh
2

]

B[q[x] + x, q[y] + y]

if ag(bθθθ, q, B) is high, the aggregation step reports the presence of an object instance

centered at q and covering a box of width bθθθw and height bθθθh in the corresponding training

image. The set of aggregation scores for target object and background portions of the

training images give rise to another ROC curve, this one used to determine a threshold

on ag(bθθθ, q, B) so that a high number of true positive boxes are reported– that is, image

locations q such that a bounding box centered there with size [bθθθw, bθθθh] covers most or all

of the target object– with a minimum of false positive boxes. Figures 3.1 and 3.13 show test

images which used an aggregation filter whose threshold was set by hand. In Chapter 4 we

present experiments in which the aggregation filter threshold was set using ROC analysis.

We emphasize that this particular aggregation procedure is in no way an optimal proce-
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Figure 3.10: Left: Example of scanning an aggregation filter for the ladder over a raw edge image which has not been filtered to remove
clutter edge pixels. Right: result of scanning the same edge density filter over the edge image after filtering. See Section 3.5.5 for details.

dure for recovering an object-level description of the contents of the image; in particular,

a variety of alignment algorithms[5][117] would be able to give a more precise correspon-

dence between the test image and a reference image or 3D model. Still, this experiment

illustrates that the edge filtering procedure can be a useful preprocessing step to higher-level

edge-based recognition processes that may fail in extreme clutter. For example, Figure 3.10

shows a test image for which the aggregation filter fails when applied to the raw edge im-

age, but is able to localize the object once the clutter edges have been removed by the

classifier cascade.

Table 3.1 summarizes all of the operating parameters that control the behavior of our

overall algorithm. Some parameters are set manually by an end user, and others are es-

timated by an automated procedure during training. Note that in Section 3.6.4, we show

that while σ is set manually by the user, recognition performance is relatively stable to a

range of settings. Also, an extension to the algorithm, presented in Section 4.1, relaxes the

requirement that edge detector parameters and σ be set by hand.

3.6 Experiments

To validate our approach we address the problem of detecting three common objects in

highly cluttered indoor scenes under high variation of out-of-image-plane rotation. We

evaluate the performance of our edge filtering procedure by computing the true positive

rate and false positive rate in each image. We emphasize that, since we represent objects

at a pixel level, “true positive rate” does not mean “percentage of times the object was
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Parameter Notation How Set Where Defined

Image Features
Edge Detector Parameters Manually: Usually by trial

and error.
Section 3.5.1

Edge Probe Support σ Manually: By visual inspec-
tion of shape features in im-
ages.

Section 3.5.1

Relative Probe Center Place-
ment In An Aperture

∆ Automatically, given σ. The
probe centers are σ pixels
apart along a circle.

Sections 3.5.2,
3.6.2

Aperture Sizes r(∆) Automatically, given σ.
Rings of probe centers σ
pixels apart in radius are
added to the aperture.

Sections 3.5.2,
3.6.2

Part Classification
Laplace Correction Number c Manually set to 2. Section 3.5.3
Fixed Detection Rate Thresh-
old

θ Manually set to enforce very
low fnp

Section 3.5.4

Aggregation
Aggregation Filter Size [bθθθwbθθθh] Automatically from object

bounding boxes in training
images

Section 3.5.5

Aggregation Count Threshold Automatically from ROC
analysis of aggregation counts
on training images

Section 3.5.5

Table 3.1: This table lists the various parameters which control the behavior of the cascade of edge probes algorithm described in Chapter
3.
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detected.” Instead, it means “percentage of object pixels detected.” Thus, even if the true

positive rate is below 100%, it may still be possible to conclusively locate the object in all

test images, since the density of object edge points will be relatively high at the true location

of the object if the true positive rate is relatively high. Likewise, “false positive rate” does

not mean “number of times a section of the background was mistakenly labeled as the

object,” but rather to “number of times an edge pixel in the background was mistakenly

labeled as belonging to the object.” Thus, even if the false positive rate is greater than

zero, it may be possible to achieve zero false detections of the object, especially if the

falsely-detected background edge pixels are sparsely distributed in the scene. Indeed, as

explained in Section 3.5.5 and indicated in Figures 3.2 and 3.13, the filtered edge image is

an encouraging starting point for aggregation of individual pixels into overall localizations

of the object in the image.

3.6.1 CROC Plots

We visualize the performance of a cascade of classifiers using cascade ROC, or CROC,

plots. We classify all pixels q in the test images with the first classifier in the cascade and

evaluate the performance of the first classifier via its true positive rate tp1 and false positive

rate fp1. The pixels classified as “object” are passed to the second classifier in the cascade,

which classifies them with some true positive and false positive rates tp2 and fp2, and so

on. A CROC plot for the cascade plots {(fp1, tp1), (fp2, tp2), · · · , (fpk, tpk)} for each

of the classifiers in the cascade. CROC plots succinctly summarize the contribution made

by each of the cascade phases toward the final goal of discarding all false positives while

retaining all true positives. A label k (or Fk) next to a point in a CROC plot represents that

the point corresponds to the kth classifier in the sequence.

3.6.2 Chair And Cart

For our first set of experiments we took 150 images each of the cart and chair against a

blue screen (Figure 3.12(a)). The images span the full revolution of the objects in the plane

parallel to the floor. The elevation of the camera varies by approximately 25 degrees with

respect to the object, and the extent of scale variation across images is about 10%. Note

that for some of our images, the generic viewpoint assumption is violated[40]; for example

two of the legs of the chair in Figure 3.12(a), second row, fourth column, are accidentally

aligned.
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We also took images of a background environment consisting of a set of “office” objects–

for example lamps, a table, and boxes(Figure 3.12(b)). The set of views spans roughly 60

degrees of rotation in the plane parallel to the floor, and variation in scale and camera ele-

vation is about the same as for the cart and chair images. To induce appearance variation

in the background between views, we modified the poses of each background object and

shuffled their relative positions every 5 to 8 images. The camera was moved between each

view.

The images used as training and testing data for the chair and cart are composites of

random pairs of foreground and background images (Figure 3.2, bottom row, and Fig-

ures 3.12(a)-3.12(b) show examples). The pairing was done without replacement; in other

words, there is no repetition of foreground or background images in the composite images.

As explained in Section 3.5.2, we wish to address the aperture problem by training a

sequence of classifiers {c1, c2, · · · , ck} which evaluate edge probes according to sets of

relative probe centers {∆1, ∆2, · · · , ∆k}, each of which evaluates edge probes over in-

creasingly larger image regions. We chose a straightforward way to implement this idea;

specifically, we arrange the relative probe centers as a set of concentric rings propagating

outward from the origin, and make ∆n contain the first n rings. Since we want each image

location in the aperture to contribute to edge probes at one or more probe centers, we posi-

tion the relative probe centers in the rings so that together, their spatial supports cover the

entire aperture. Specifically, we space the relative probe centers in each ring at intervals

of σ pixels along the circle, and space the rings σ pixels from each other in radius. Other

layouts for spatial shape features are possible; for example, in [9] they are more densely

concentrated near the query edge pixel. We chose a uniform spacing of probe centers for

simplicity– specifically, our scheme prevents us from having to make further design choices

relating to how the density of probe centers should vary with respect to distance from the

query edge pixel. Figure 3.6(a) shows the relative probe center layout for ∆3. After in-

specting the typical shape features in training images of the chair and cart, we set σ to 10

pixels so that the edge probes would capture interesting shape variations in the data without

being too redundant. In Section 3.6.4, however, we report recognition results over a range

of σ values.

To induce the decision trees, we employ a series of algorithmic techniques which per-

formed well in previously published comparative studies. First we discretize the edge probe

values using the implementation of minimum-entropy discretization [31] in the MLC++

software library [61]. We chose to do so following the results in [24] which demonstrated
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that discretizing continuous training data, especially using entropy-based methods, led to

significant classification accuracy increases in trees trained on UCI data sets [11]. After

discretization we grow the trees using the ID3 induction routine in MLC++. We used the

information gain criterion to generate splits (See Section 4.1.1 for a discussion). While

many other splitting criteria have been presented, for example [62][18], we chose informa-

tion gain because it is the widely-employed standard. Furthermore, we found anecdotally

that the one-sided split criteria in [18] generated trees that were completely eliminated dur-

ing holdout. As mentioned in Section 3.5.3, we assigned Laplace-corrected probabilities at

each leaf. We did so following the results in [14], which suggest that pruning with Laplace-

corrected leaf probabilities led to increased classification performance on 10 UCI data sets.

Anecdotally, we found that the Laplace correction and discretization both had a significant

impact on the performance of our decision trees. We used the holdout set to prune the de-

cision trees as described in Section 3.5.3, setting our target false negative rate θ to 2% to

constrain each tree in the cascade to classify 98% of its true positive cases correctly.

For each recognition trial on the chair and cart, 150 composite images were partitioned

into a tree-growing set of 50 images, a holdout set of 50 images, and a test set of 40-50 im-

ages. Edges were detected on all images using the Vista line finder [89]; for computational

speed we sample the detected edges at 5 pixel intervals and classify the edge samples. In

each image, the ratio of the number of background edge pixels to foreground edge pixels is

approximately 10 : 1.

A set of sample results on the chair is shown in Figure 3.11, and an example of pixel

classification over a series of cascade phases is shown in Figure 3.4. The images show

classification results after the first, fifth, tenth, and fifteenth cascade phase. Note that as

successive classifiers are applied, using larger apertures, the number of background edge

points is reduced dramatically while retaining a high number of edge points on the chair.

Note that in both figures, false positives are so sparse and isolated after edge filtering that

they are can be easily removed by an aggregation filter mechanism as described in Section

3.5.5 and shown in the fourth column of the figure.

The performance of each tree in the cascade, over all test images containing the chair,

is summarized in the CROC plot in Figure 3.12(c). We performed 7 recognition trials;

each trial consisted of randomly partitioning the images into tree-growing, holdout, and

test sets, training the cascade, and evaluating the number of true positive and false positive

pixels as more phases are added to the cascade. More specifically, for each cascade we

compute tpp and fpp for each test image and recognition trial. The “x” in the graph plots
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Figure 3.11: Many example results of edge pixel classification on the chair. The first and third rows show input edges, and the second
and fourth rows shows the final classification results. 70



(a) Foreground images (b) Background images
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(c) ROC curve for the chair
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(d) ROC curve for the cart

Figure 3.12: Example foreground and background images and ROC plots for recognition of the cart and chair. See Section 3.6.2.

(mean(fpp), mean(tpp)); bars extend to the left and right by var(fpp) and up and down

by var(tpp). Figure 3.12(d) shows an analogous graph for results of 6 recognition trials

with the cart. For both objects, the results for σ = 5 pixels and σ = 20 pixels are similar.

The true positive and false positive rates for the two objects are comparable– for example,

roughly 70% of edge pixels on the object are retained, versus 5% false positives among the

background.

3.6.3 Ladder

In order to test this technique on real-world images of an object in a variety of clutter set-

tings with no bluescreening, we took 1157 1600-by-1200 images of a ladder in 7 different

indoor environments: a classroom, conference room, office, lab, living room, warehouse,
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and kitchen (Figures 3.1 and 3.13). For each image, the camera was approximately 3m

away from the objects in the scene; the elevation of the camera varied between 1.6m and

1.75m; the set of all images of a particular scene covered about 60 degrees of rotation with

respect to the scene objects in the plane parallel to the floor. The camera was moved be-

tween each view, and once every five views the ladder was rotated to an arbitrary angle

with respect to the ground and the poses and configurations of clutter objects were ran-

domly modified. The depth of the ladder with respect to the camera varied by a total of

approximately 20% across all views. Edges were detected in these images using Vista as in

the above section, and edges were hand-labeled as belonging to the ladder, or to the clutter

objects.

For each experiment, we selected images for tree-growing and holdout sets, and trained

cascades of classifiers to filter out background edge pixels as described above. For the

experiments in Sections 3.6.3 and 3.6.3, we set the edge probe variance parameter σ to

20 pixels by visual inspection of the shape features present in the images, as in Section

3.6.2. To constrain the decision trees to keep a high true positive rate, we set the pruning

parameter θ to 2%. Depending on the arrangement of edges in the training images, it is

possible that the decision tree trained for a particular cascade phase may not significantly

reduce the number of false positives on the holdout set; therefore, for our experiments on

the ladder we skipped a cascade phase if it failed to reduce the false positive rate by 5% or

more.

Training And Testing In A Single Environment

First, we considered training individual classifier cascades for each indoor environment

separately. For each environment, we randomly split the set of all images of the object

in that scene into a tree-growing set of 60 images, a holdout set of 60 images, and a test

set containing the remainder of the images. Then the procedure described in Section 3.5

was used to train a 20-phase classifier cascade, and run each of the test images through

the resulting edge filter. We used 20 cascade phases because during training, classifiers

after the 20th phase failed to reduce the false positive rate significantly. For each test

image, we measured the true positive and false positive rates after the final cascade phase.

Results are summarized in Table 3.2; examples are shown in Figures 3.1 and 3.13. As in

the experiments on the chair and cart, each classifier cascade retained a high percentage

of edge points on the object (roughly 71%-78%), while discarding most background edge

pixels (roughly 90%).

72



Figure 3.13: Results of edge filtering and edge grouping for cascades trained to recognize the ladder in various environments. Top to
bottom: the kitchen, the lab, the cubicle, the classroom, the conference room, the warehouse, the apartment. Left to right: input images
with detected edges overlaid, results of the edge filtering operation described in Section 3.5, and results of edge grouping as described
in Section 3.5.5.
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Background # train # test mean
TP

mean
FP

var TP var FP

Classroom 120 48 0.778 0.102 0.008 0.008
Kitchen 120 43 0.712 0.111 0.038 0.038
Cubicle 120 54 0.718 0.080 0.039 0.039

Conf. Rm 120 63 0.775 0.089 0.018 0.018
Warehouse 120 51 0.755 0.094 0.021 0.021
Living Rm 120 54 0.779 0.064 0.017 0.017

Lab 110 12 0.739 0.210 0.010 0.010

Table 3.2: Edge pixel filtering results for classifier cascades trained to detect the ladder in individual environments. Each row corresponds
to edge filtering results for a classifier cascade trained on images taken in the environment indicated in the first column. The second
column indicates the total number of images in the tree-growing and holdout sets together. The third column gives the number of
independent test images used for evaluation. The fourth and fifth columns give the average true positive (TP) and false positive (FP)
rates over all test images, and the sixth and seventh columns give the variance in true positive and false positive rates across all test
images. See Section 3.6.3 for further details.

Distinct Training and Testing Environments

To suggest that the performance of our classifier cascades degrade gracefully according

to the deviation between training image characteristics and test image characteristics, we

trained a cascade on a set of images of the ladder in five of the rooms (kitchen, cubicle,

warehouse, living room, and lab), and tested it on images of the other two rooms (classroom

and conference room). We randomly selected a total of 120 images from the set of all

images of the object in the training environments, using 60 of them for the tree-growing set

and 60 for the holdout set. A classifier cascade was constructed and applied to all images

of the object in the test environments, i.e. environments not present in the training data.

Edge pixel classification results are summarized in Table 3.3, using the same notation as

Table 3.2. Comparing the corresponding lines in Tables 3.2 and 3.3, we see that filtering

performance decreases slightly in some aspects: the true positive rate on the classroom

images drops somewhat when the classroom images are not present in the training data,

and the false positive rate for the conference room images increases when the conference

room images are absent from training. However, some decrease in performance is to be

expected when conditions in training and test images vary significantly; the key point is

that edge filtering performance degrades gracefully with these variations.

3.6.4 Sensitivity

The edge probe variance parameter σ is a free parameter that critically affects the size of the

spatial support region for our basic edge features. In the experiments reported in previous
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Background # test mean
TP

mean
FP

var TP var FP

Classroom 169 0.661 0.072 0.050 0.050
Conf. Rm 183 0.779 0.110 0.013 0.013

Table 3.3: Edge pixel filtering results for classifier cascades trained to recognize the ladder in a different set of environments than those
found in the test images. See Table 3.2 for an explanation of notation and Section 3.6.3 for more information.

Sigma mean
TP

mean
FP

var TP var FP

15 0.827 0.094 0.009 0.009
20 0.775 0.089 0.018 0.018
25 0.715 0.074 0.017 0.017
30 0.775 0.125 0.014 0.014

Table 3.4: Edge pixel filtering on the conference room image set for various settings of σ. See Section 3.6.4.

sections, σ was set by hand to make the spatial support of edge probes large enough to

integrate edge pixels from small neighborhoods on the target objects. However, it is natural

to wonder how the performance of our approach depends on the choice of σ. To address this

issue, we trained a set of 4 classifier cascades on the images of the ladder in the conference

room (Figure 3.13, fourth row), corresponding to σ values of 15,20,25, and 30 pixels. As

in Sections 3.6.3 and 3.6.3, the relative probe centers were arranged in concentric rings at

distances σ, 2 ∗ σ, · · · pixels from the origin. However, in order to increase the aperture size

at a similar rate for all values of σ, we added two rings of relative probe centers per cascade

phase for σ = 15. 60 images of the conference room were randomly selected as a tree-

growing set, 60 images made up the holdout set,and the remaining 63 images were used

for evaluation. Figure 3.4 summarizes the results, using the same notation as described in

Table 3.2. While the true positive and false positive rates do vary across settings of the

parameter, in each case the filter retains a high percentage of edge pixels on the object

(roughly 71% to 83%) while removing roughly 90% of all background edge pixels. In

subsequent experiments, variations in tpp and fpp of this magnitude did not significantly

affect aggregation performance. Exactly how the setting of σ affects true positive and

false positive rates is complex and depends on characteristics of the viewing environment,

the objects present, the classifiers in the cascade, and the policy for arranging the relative

probe centers in the aperture. Nonetheless, these results suggest that the classifier cascade

performs well over a range of reasonable values for this parameter.

An alternative to selecting a setting of σ by hand is to evaluate many different edge

probes, corresponding to many different σ settings, at each relative probe center.
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Figure 3.14: Left: Histogram of the number of edge probes evaluated per edge point in 54 test images. Right: Cumulative distribution
function for this histogram.

3.6.5 Empirical Complexity

This section addresses concerns about the time and space complexity of our edge filtering

approach, in terms of experimental results on the training and test phases. In particular, we

demonstrate that the amount of computation required to train the cascade and evaluate it

on a novel image is reasonable, despite the potentially large number of image features and

classifiers in the cascade.

Training the cascade of classifiers involves computing edge probes and inducing a deci-

sion tree for each phase of the cascade. At a particular cascade phase, an exhaustive set of

edge probes is computed over all edge points in the training set; thus, space requirements at

training time will be determined by the number of edge pixels in the training set at each cas-

cade phase, along with the number of relative probe centers in the aperture at each phase. In

Table 3.5 we show these numbers for a few phases of a classifier cascade trained on images

of the ladder in the classroom background (Figure 3.13, third row) as described in Section

3.6.3. This table also shows approximate running times of the decision tree inducer on a

1.67 GHz Athlon for those cascade phases, and the number of nodes in the learned decision

trees. On one hand, due to our strategy of evenly spacing the relative probe centers in the

aperture, the dimensionality of the training data increases as the aperture is grown; on the

other hand, since we filter training examples out of the training set at each phase of cascade

training, the number of training examples decreases as the aperture is grown. The total time

required to train one classifier cascade on a 1.67 GHz machine, including all decision tree

induction and edge probe calculation, is approximately one day.
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Phase # features # examples time # nodes

1 6 316338 0:04 896
5 92 213282 0:16 94

10 340 141120 0:44 10
15 746 111674 1:05 11
20 1309 107848 1:20 8

Table 3.5: Number of relative probe centers (second column), number of training examples (third column), decision tree induction times
(fourth column, hours:minutes), and number of decision tree nodes for various cascade phases for the classroom image set. See Section
3.6.5.

When evaluating a novel image, some number of edge probes are computed at each edge

point in the image until either the edge point is filtered out of the image or the last phase of

the cascade is reached. Thus, the time complexity of evaluating a novel image will in large

part be determined by the number of edge probes required for each of its edge points. To get

a sense of the total number of edge probes computed at typical edge points in test images,

we took the classifier cascade trained on images of the ladder in the living room (Figure

3.13, sixth row) as described in Section 3.6.3, and counted the number of edge probes

required to classify each edge pixel in each test image of the living room, over all cascade

phases. Figure 3.14 summarizes these edge probe counts in a histogram and cumulative

distribution. Note that roughly 23% of all edge pixels are classified based on ten or fewer

distinct edge probes, and 95% of all points in the test images require evaluation of 50 or

fewer edge probes. This is significant since the total number of relative probe centers in the

largest aperture (Table 3.5, last row) is 1309. Thus, while the training phase selects edge

features from a large set of potential features, relatively few of these features are evaluated

for any given image point at run time. As an illustration, Figure 3.15 shows the set of all

shifted probe centers for the 20th cascade phase at a typical edge pixel, and the set of 65

shifted probe centers at which edge probes were computed during the classification of the

point by all phases of the cascade. Note also that since an edge probe essentially consists

of convolution of a portion of the image with a small gaussian kernel, it is fast to compute.

An initial, non-optimized implementation of our technique evaluates a 1600x1200 image

from the ladder set in about 5 seconds.

3.7 Discussion

In this section we make an initial exploration into what features our decision trees compute

in order to classify edge pixels. Since decision trees classify training examples by making a
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Figure 3.15: Top: The set of all relative probe centers for the 20th cascade phase, shifted to the point at the yellow circle, are shown as
red squares. Right: In order to classify the point, edge probes are only evaluated at the probe centers shown in red.
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series of threshold tests on individual features, we can traverse the tree in order to interpret

it in terms of a step-by-step analysis of what tests it is making in order to arrive at a classifi-

cation. We stress that our decision trees were not designed at the outset with interpretability

in mind; for tree-building techniques along these lines, see for example [18]. However, by

manually tracing paths through our trees, we can in some cases gain insight into the visual

characteristics being exploited for discrimination. To do so, we examined decision trees

induced on the chair data set (Section 3.6.2) and searched for leaves containing large num-

bers of training examples. For each of those leaves, we traced the path through the tree

leading from the root node to the leaf and made a graphical representation of the features

being tested at each node and the values of the split.

More specifically, consider representing each node in the decision tree as a pair (δδδ, t);

a pixel q is sent down the left branch at that node if ep(q + δδδ,G) > t and down the right

branch of the tree if ep(q + δδδ,G) < t. A path from root to leaf generates a set of these

pairs, each pair corresponding to a test at a node along the path. These tests define a set of

intervals in which the edge probe values must lie in order for the test pixel to arrive at the

leaf. That is, for each relative probe center δδδ we can define a set of intervals {(tmin, tmax)}

such that in order to be classified into the leaf in question, ep(q + δδδ,G) must be greater

than tmin and less than tmax. We represent these valid feature value intervals graphically

by plotting the range between the maximum and minimum edge probe values over all edge

probes, and the sub-ranges (tmin, tmax) for each δδδ. In Figure 3.16, the locations of relative

probe centers δδδ is plotted in red, the query edge pixel q is in yellow, the range of all edge

probe values is in grey, and the sub-range (tmin, tmax) is in black.

Example displays of admissible feature value intervals for two different decision tree

paths are shown in Figure 3.16. In Figure 3.16(a) we show feature intervals corresponding

to a highly-populated leaf leading to a positive classification. The display suggests that

edge probe values should be in the low to high range of values for probe centers lying on

a diagonal line leading from below and left of the point, to above and right of the point.

Also, edge probe values should be low for probe centers on either side of that line. This

suggests that this particular leaf characterizes edge pixels lying along a diagonal edge that

is more or less isolated from the background. Indeed, in several of the training images,

the legs of the chair are in this sort of configuration, and we show an example in Figure

3.16(b). Figure 3.16(c) shows admissible ranges of values for edge probes leading to a

negative classification. Edge probes evaluated at three probe centers at close proximity

above, below, and to one side of the point must be in the mid-to-high range of values in

order for the pixel to arrive in the leaf. This suggests that edge pixels with very high edge
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(a) Feature values leading to a positive classification (b) Example image with those features
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(c) Feature values leading to a negative classification (d) Example image with those features

Figure 3.16: Examples of interpreting paths through the decision tree as the selection of ranges of feature values for positive and negative
classification. Figure 3.16(a) shows feature ranges corresponding to a path through the tree leading to a positive classification, and Figure
3.16(b) shows an example of an object pixel classified to that leaf. Figure 3.16(c) shows an analogous set of feature ranges for a path
through the tree leading to a negative classification, and Figure 3.16(d) shows a background pixel classified to that leaf. The query edge
pixel is shown in yellow; relative probe centers used as features in the path to the leaf are shown in red; the range of feasible feature
values for those features are shown as the black sub-range over the full range of edge probe values (grey).
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density all around them are likely to belong to the background. In fact, most pixels in

regions so busy with edges do in fact project to the background (see Figure 3.16(d) for an

example).

3.8 Conclusion

Our approach to separating objects from background based on edge cues consists of screen-

ing each edge pixel in the image through a series of classifiers, each of which computes sets

of edge features over successively larger image areas. Each classifier in the cascade com-

putes a sparse set of localized edge features in a sequence determined by its tree structure.

By tuning feature extraction to the object and background present in training images, we

overcome the effects of object structure (concavities, holes, wiry structures) which con-

found template-based approaches to recognition. And by screening the image through a

series of increasingly complex classifiers, we quickly discard edge points which are eas-

ily discriminated from the object, saving computation for more ambiguous portions of the

image.
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Chapter 4

Extensions

In this chapter we extend the basic algorithm presented in Chapter 3 to enhance its perfor-

mance in a specific set of recognition scenarios. First, Section 4.1 proposes the use of a

richer set of image features to deal with images in which binary edges are difficult to extract

reliably. Then, in Section 4.2 we provide a means for adapting our basic part classification

algorithm so that part classification and aggregation are tightly coupled. Finally, Section

4.3 gives some more alternatives to fixed detection rate ROC optimization which allows us

to adapt our cascade of edge probes to situations in which the relative importance of false

positives and false negatives is known before training. Chapter 5 presents the results of

experiments which apply these extensions to real image sets.

4.1 Edge Operator Probes

One limitation of the edge-based recognition approach described in the preceding chapter

is illustrated in Figure 4.1. Edges are extracted from the image on the left, with the goal

of using the configuration of edges to detect the presence and location of the stool at the

center of the image. Because some of the edges on the outline of the stool have low contrast

(for example, near the bottom of the rear left leg and top of the rear right leg), they are not

reported by the edge detector. Since the recognition strategy outlined in Chapter 3 takes

binary edge images as input, it will fail to recognize edges present on the object if those

edges are not detected by the edge detector. As a result, it is necessary to finely tune the

parameters of the edge detector so that all of the edges on the object are detected, and as

few spurious edges as possible are detected.
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(a) Input Image (b) Extracted Edges

Figure 4.1: An example of binary edge detection failing to capture all the salient edges on a target object. Left : Input image. Right :
Binary edges extracted from the image. Note that edges are missing from sections of the rear stool legs.

We address this limitation by making two modifications to the algorithm presented in

Chapter 3. First, we re-cast the part classification problem in terms of classifying each

pixel in the image, rather than pixels where edges have been detected. Second, for image

features we replace edge probes with edge operator probes, that is, edge detection operators

evaluated at shifted probe centers. In so doing, we tune edge features to a specific set

of images and overcome the brittleness of making binary decisions about whether pixels

correspond to edges.

For completeness, our new problem statement is as follows. Given a novel image I ,

our goal is to generate a list of pixels O such that for each q ∈ O, I[q] projects onto the

target object. Our source of training data is a set of example images {T} along with lists

{TT}, where for each q ∈ TT , T [q] projects onto the target object. Thus, while in the

previous chapter we classified edge pixels q based on the local arrangement of edges Lq

in the vicinity of q, here we classify raw image pixels based on edge characteristics of the

image patches that surround them.

As in the previous chapter, we wish to extract features from the image which capture

the local edge characteristics of an image neighborhood. However, rather than relying on a

pre-determined binary edge map for this purpose, we instead wish to apply edge operators

directly to local neighborhoods in the raw image. We draw the edge operators from the

family of first derivative-of-Gaussian (D-of-G) operators since they are straightforward to

parameterize in terms of their scale and orientation characteristics. An edge operator probe

at probe center p in image I is defined as
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(a) (b)

Figure 4.2: Examples of responses of the image in Figure 4.1(a) to two edge operators. The edge operators are shown at the lower left.

eop(p, I, θθθ) =
∑

t

gθθθ(t) · I[p − t]

where gθθθ is a first-derivative-of-Gaussian (DOG) operator whose characteristics are

controlled by the parameter vector θθθ. Here, we consider the family of DOG operators

parameterized by orientation φ and scales σx and σy in the x and y directions. Specifically,

gθθθ(p) =
−x(p, φ)

σ2
x

∗ exp(−
1

2
(
x(p, φ)2

σ2
x

+
y(p, φ)2

σ2
y

))

and x(p, φ) = p ·
[

cos(φ)
sin(φ)

]

and y(p, φ) = p ·
[

− sin(φ)
cos(φ)

]

. The scale and orientation

characteristics of gθθθ are controlled by the parameters θθθ = [σx, σy, φ]. An edge operator

probe responds strongly to the presence of edges at orientation φ and scales described

by σx and σy in the vicinity of pixel p. Examples of two edge operators applied to the

image in Figure 4.2(a) are shown in Figure 4.2(b). We choose to focus on this family of

edge operators because they are easily parameterized and because they are by far the most

common edge operators used as the substrate for edge analysis in practice.

Our strategy will be to select a set of derivative-of-Gaussian operators {gθθθ}, and clas-

sify image pixels by evaluating those operators at fixed spatial offsets with respect to them.

In other words, the vector of image features used to classify the image patch around q in

image I is [eop(q +δδδ1, I, θθθ1), · · · , eop(q +δδδm, I, θθθ1), · · · , eop(q +δδδ1, I, θθθn), · · · , eop(q +

δδδm, I, θθθn)], with one entry for each edge operator g∈{gθθθ1
, · · · , gθθθn

} evaluated at each rela-

tive probe center δδδ ∈ {δδδ1, · · · , δδδm}. By training a cascade of classifiers to correctly classify

image pixels based on these image features, we hope to automatically select which edge

orientations and scales are relevant for localization of the target object; previously, we had

implicitly selected relevant edge characteristics by hand when we tuned the parameters of

our binary edge detector.
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4.1.1 Feature Selection

There are infinitely many possible edge operators gθθθ. Therefore, we need to select a small,

discrete set of operators to use for our edge operator probes. This set has two requirements:

first, they should discriminate object pixels from clutter pixels when evaluated at shifted

probe centers; second, for efficiency the set should be as compact as possible, in other

words the edge operators should not produce redundant responses on images of interest.

This section deals with both issues. Specifically, we address redundancy by initially con-

structing a pool of edge operators which produce non-redundant responses when applied

to training images. Then, prior to training each cascade phase, we select a smaller subset

of edge operators to be used for classification in that particular phase; we do so by ap-

proximating how useful each operator is for discriminating between the training examples

present in that phase.

Before training any classifiers in the cascade, we convolve a representative set of train-

ing images with all of the candidate operators and select a subset of operators whose

operator responses on the training images are non-redundant. In more detail, let Φ =

{φ1, · · · , φa} represent an initial set of orientations sampled uniformly from [0, π]. Also,

let Σx = {σx1, · · · , σxb} represent an initial set of operator scales sampled uniformly from

an interval of reasonable operator scales [σmin, σmax]. Σy is an analogous set of scales in

the y direction. We start with an initial set of edge operators G1 = {gθθθ} containing one edge

operator for each θθθ ∈ Φ × Σx × Σy. We consider a pair of edge operators gθθθ1 and gθθθ2 to

be redundant if they produce highly similar operator responses when applied to the training

images. We measure the similarity of operator responses by normalized correlation. That

is, we convolve each training image T with gθθθ1 and gθθθ2, and if corr(gθθθ1 ◦ T, gθθθ1 ◦ T ) is

higher than a threshold for all T , we consider gθθθ1 and gθθθ2 to be redundant edge operators.

We reduce the initial set of edge operators G1 to a smaller set G2 using the forward selection

algorithm shown in Algorithm 4. In short, we individually consider each edge operator gθθθ

from G1 in turn, and add it to G2 only if there are no operators in G2 with respect to which

gθθθ is redundant. We emphasize that we are not just correlating the edge operators with each

other and discarding edge operators gθθθ1 when corr(gθθθ1, gθθθ2) is high; rather, we remove edge

operators whose responses to the image are highly redundant.

At this point, we are left with a set G2 of edge operators which span a space of reason-

able edge operator parameters but do not produce redundant values when applied to our

training images. A reasonable strategy for training a classifier to discriminate between ob-

ject image pixels and background image pixels is to compute all edge operators in G2, at all
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Algorithm 4 Remove Redundant Operators Selects a subset of edge operators from G1 which are
non-redundant with respect to training images G2. See Section 4.1.1 for details.

Require: Set of training images T , set of edge operators G1, correlation threshold h, can-
didate operator set G1.

1: G2 = ∅.
2: for all gθθθa ∈ G1 do
3: for all gθθθb ∈ G2 do
4: for all T ∈ T do
5: cab = corr(gθθθa ◦ T, gθθθb ◦ T )
6: end for
7: end for
8: if ∃cabs.t.cab < h then
9: G2 = G2 ∪ gθθθa

10: end if
11: end for
12: Return G2

shifted probe centers corresponding to all image pixels and relative probe centers in a set ∆.

However, this strategy forces the classification algorithm to learn based on ‖∆‖ ∗ ‖G2‖ fea-

tures; empirically, the computational load of this large learning problem became unfeasible

for reasonable numbers of edge operators and relative probe centers.

To overcome this difficulty, we perform a second stage of feature selection prior to train-

ing each classifier in the cascade. Unlike the first feature selection stage, this step is specific

to the type of classifier we wish to train. For efficiency, this step is a fast filter method [12]

which employs a highly simplified analog of the classifier (hereafter the “simple classifier”)

to make predictions about the usefulness of candidate image features. Generally speaking,

filter methods for feature selection train a number of simple classifiers, each of which em-

ploy a small number of candidate features to discriminate between positive and negative

examples. If a simple classifier discriminates the positive and negative examples well, the

corresponding features are assumed to be favorable for training the more complex classifier.

The simple classifier is chosen so that training it is very fast; this is what makes filter meth-

ods computationally feasible. However, filter methods can fail to assign salient features

high scores if the simple classifier is a poor approximation of the more complex one. On

the other hand, wrapper methods essentially train the full, complex classifier with different

feature subsets and pick features whose complex classifiers discriminate the training ex-

amples well. Wrapper methods are able to more accurately approximate the utility of each

feature because the utility is based directly on the complex classifier as opposed to an ap-

proximation of it; however, since wrapper methods imply repeated training of the complex
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(a) Complex classifier (b) Simple classifier

Figure 4.3: Illustration of complex and simple classifiers in the context of feature selection. We select features to use for training the full
tree (Figure 4.3(a)) by training a set of stumps (Figure 4.3(b)) and evaluating how well they discriminate the training examples.

classifier, they can be computationally burdensome. We should note that the decision trees

we use as part classifiers do their own type of feature selection, in that they select features

at each node to split on. For a more in-depth description of feature selection strategies, see

[12].

In our case, we train a decision tree at each cascade phase, so we use a simplified

decision tree called a decision stump as our simple classifier for feature selection (Figure

4.3). A decision stump is simply a decision tree with one decision node; it takes a single

feature as input, and classifies instances by thresholding that feature. At each cascade

phase, we generate one decision stump per operator-offset pair, that is, each possible pair

(gθθθ, δδδ) ∈ G2 × ∆. For each such operator-offset pair, we compute sets of edge operator

probes {eop(q+ + δδδ, T,θθθ)} and {eop(q− + δδδ, T,θθθ)} for object pixels q+ and background

pixels q−. A decision stump is trained to find a threshold which discriminates {eop(q+ +

δδδ, T,θθθ)} from {eop(q− + δδδ, T,θθθ)}; the operator-offset pair is given a score based on how

well the decision stump discriminates. The k operator-offset pairs with the best scores are

selected as the features used to train the full decision tree.

We score each decision stump using the same criterion used to determine splits during

tree induction: namely, for each possible threshold setting t, we compute the so-called

“information gain” gain(t) for that threshold setting (see e.g. [79]), and set the score for

the decision stump to maxt gain(t). In detail, consider a threshold t which splits a set S

of feature values into two subsets, Sl = {v ∈ S|v < t} and Sg = {v ∈ S|v > t}. The
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information gain for this feature and threshold is

gain(t) = entropy(S) −
|Sl|

|S|
∗ entropy(Sl) +

|Sg|

|S|
∗ entropy(Sg)

where

entropy(S) = −
|S+|

|S|
∗ log

|S+|

|S|
−

|S−|

|S|
∗ log

|S−|

|S|

and S+ and S− are the subsets of S that correspond to positive and negative examples

(i.e. object and background pixels) respectively. Information gain measures the difference

between the entropy of S and the average entropies of Sl and Sg. While other decision

stump criteria do exist (see for example [62][18]), information gain is still widely consid-

ered the standard criterion.

Our motivation for using a filter method based on decision stumps is that since we se-

lect features using the decision tree splitting criterion, we at least know that the features we

select discriminate well as root nodes in the tree. Our assumption is that as decision tree

induction recursively partitions the tree-growing set, the features will continue to discrimi-

nate well.

Table 4.1 summarizes the image feature and part classification parameters that must be

manually set or automatically estimated to use edge operator probes for localization. Since

aggregation is not affected by the change in image features and part classification, we omit

those parameters in the table.

4.2 Aggregation-Sensitive Part Classification

In the previous chapter we presented part classification and aggregation as two modular

steps to be optimized separately. In particular, we first trained a cascade of classifiers to

determine which image pixels project onto the object and which project to the background;

afterward, we classified the training images with the cascade and used the classified im-

ages to set the acceptance threshold of a density filter screening the image for object-sized

groupings of positively classified pixels. Our intuition is that the performance of the two

phases are tightly coupled; that is, the more successful the part classifier is at removing

background pixels and retaining target object pixels, the more successful the aggregation

step will be at identifying bounding boxes in the image corresponding to the object, and

rejecting bounding boxes covering the background.
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Parameter Notation How Set Where Dis-
cussed

Image Features
Initial Edge Operator Probe
Parameters

Φ, Σx,
Σy

Manually: They finely cover
the space of plausible orienta-
tions and scales

Section 4.1.1

Edge Operator Redundancy
Threshold

h Manually set to a value close
to 1.

Section 4.1.1

Part Classification
Number of features per classi-
fier

k Manually set to a small value
for fast training

Section 4.1.1

Fixed Detection Rate Thresh-
old

θ Manually set to enforce very
low fnp

Section 3.5.4

OR Misclassification Costs cfp,cfn Manually set to strongly en-
courage very low false nega-
tives and low false positives.

Section 4.3

Relative Probe Center Place-
ment In An Aperture

∆ Manually set so that the oper-
ators cover the whole aperture

Sections 3.5.2,
3.6.2

Aperture Sizes r(∆) Automatically. Rings of
probe centers are added to the
aperture.

Sections 3.5.2,
3.6.2

Table 4.1: This table lists the various parameters which control the behavior of cascades of edge operator probes.
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However, it is not necessarily the case that aggregation performance– in terms of the

number of true positive bounding boxes tpb and false positive bounding boxes fpb found

in test images– strictly improves if the number of false positive pixels fpp decreases and

the number of true positive pixels tpp increases. Specifically, the performance of the ag-

gregation step depends not only on the quantity of true positive and false positive pixels,

but also on their spatial distribution. For example, consider a test image whose pixels have

been classified by two distinct pixel classifier cascades (Figure 4.4. In both cases, tpp of

the pixels on the target object have been correctly detected, and fpp of the pixels among

the background have been falsely classified as belonging to the target object. However,

in the first image (Figure 4.4(a)), all of the false positive pixels lie concentrated in one

small portion of the image, while in the second case(Figure 4.4(b)), the false positives are

uniformly distributed among the background. If the first image is scanned with an object-

sized aggregation filter (Figure 4.4(d)), most image locations among the background will

register a score of zero points, and two portions of the image will register high scores–

the image section containing the object and the background image section containing the

highly-concentrated false positives. Meanwhile, if the second image is scanned with the

same aggregation filter (Figure 4.4(c)), each location among the background will register a

small, but nonzero, score, while the image region covering the object will register a high

score. In the first case, there is potential for confusion between the true-positive portion of

the image and the false-positive portion of the image, since the aggregation filter returns

high scores for both areas; in the second case, the only section of the image with a high

score is the portion containing the true positives, so there is less potential for confusion.

The key point is that the part classifier, by itself, has no capacity to prefer images of

the second type over images of the first type, since its only performance metric is based on

a function of the sheer number of false positive and true positive pixels, not their spatial

distributions. In particular, the cascade training approach presented in the previous chapter

greedily adds new classifiers to the cascade if doing so increases a performance criterion

based on the number of true positive and false positive pixels, but if the end goal of the

localization procedure is in fact based on true positive and false positive boxes, adding new

classifiers to the cascade may actually damage performance.

Here, we present a modification to the training procedure presented in Chapter 3 which

biases the training of classifiers in the cascade so that criteria based on aggregation per-

formance and pixel-wise classification performance are both optimized. In particular, we

modify the decision tree pruning criterion so that sub trees are removed from the decision

trees if and only if doing so increases a performance criterion based on true positive and
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(a) Dense False Positives (b) Sparse False Positives

(c) Aggregation scores for 4.4(a) (d) Aggregation scores for 4.4(b)

Figure 4.4: Motivating example for aggregation-sensitive part classification. Figures 4.4(b) and 4.4(a) have the same number of false
positive and true positive pixels (in green), but in 4.4(a) the false positives are densely clustered. Figures 4.4(d) and 4.4(c) show the
aggregation scores for the two images: it is easy to localize the object based on the points in Figure 4.4(b), while the points in Figure
4.4(a) give rise to a false positive. Unfortunately pixel classifiers have no way to prefer Figure 4.4(b) over Figure 4.4(a).
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false positive rates at the box level. We emphasize that the cascade of edge probes pre-

sented in the previous chapter can be a useful technique to apply to images on its own,

regardless of what sort of aggregation step follows it; in particular, we feel that optimizing

the cascade using the technique presented in the previous chapter can be an advantageous

pre-processing step prior to registration of the image to a 2D or 3D model. Here, how-

ever, we concentrate on the case in which it is known a priori that the part classification

phase will be followed by a box aggregation procedure. Thus, we refer to this optimization

scheme as aggregation-sensitive part classifier training.

We begin by slightly modifying the definition of a aggregation filter so that it sums up

the raw classifier scores over a rectangular region of the image rather than the number of

object pixels in that region. Recall that given a novel image I , we compute image features

v from patches of the image and the part classification step assigns a continuous score w to

each image feature. The part classifier thresholds this score and returns all triples (b, l, w)

such that w is higher than the threshold. For each training image, consider the image W ,

where W [q] = w is the raw part classifier score given to the image feature v corresponding

to image pixel q. The modified aggregation filter sums these raw scores over an image

rectangle covered by the bounding box bθθθ

ag(bθθθ, q, W ) =
∑

x∈[
−bθθθw

2
,
bθθθw
2

]

∑

y∈[
−bθθθh

2
,
bθθθh
2

]

W [q[x] + x, q[y] + y]

The motivation for this modification is that it allows us to dispense with separate thresh-

olds on pixel classification scores and aggregation scores, so that we can optimize classi-

fiers with respect to a single threshold on aggregation scores. This allows us to make only

minor adjustments to our previous pruning scheme, presented in Section 3.5.4, to enable

ROC-based decision tree pruning in an aggregation-sensitive way.

As presented in the previous chapter, we grow a decision tree using the training exam-

ples in the tree-growing set and then prune the tree using the examples in the holdout set.

Here, we follow the same approach of considering each subtree for pruning, and determin-

ing whether or not to prune a subtree by using heuristics to grade ROC curves correspond-

ing to the full tree and the pruned tree. Here though, instead of constructing ROC curves

based on part classifier scores given to individual image features, we construct ROC curves

based on the outputs of aggregation filters evaluated on object and background patches of

the holdout images. Specifically, we sample a set of image pixels from each holdout im-

age; these pixels fall into two categories. The first, {ql+
} consists of image pixels near the
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center of instances of the target objects in images I . The second, {ql
−

}, consists of pix-

els drawn from the backgrounds of those images. For each classifier, we compute the sets

{ag(bθθθ, ql+
, W )} and {ag(bθθθ, ql

−

, W )}; they constitute the positive and negative examples

used to construct the ROC curve for the classifier. In short, previously we constructed ROC

curves for classifiers based on the scores that the classifier assigned to object image pixels

and background image pixels; here, we construct ROC curves for the classifiers based on

the outputs of an aggregation filter applied to object and background portions of the image.

Our modified training algorithm is summarized as follows. At training time we grow a

decision tree which discriminates image features corresponding to object pixels in the tree-

growing set, from image features corresponding to background pixels in the tree-growing

set. For each subtree, and for each image in the holdout set, we produce a pair of images

W1 and W2, which contain the raw classification scores for those images after classification

by the full tree and the tree sans subtree. We compute ROC curves based on the aggregation

scores {ag(bθθθ, q, W1)} and {ag(bθθθ, q, W2)}, and decide whether or not to prune the subtree

based on ROC grading criteria. After pruning, we arrive at a threshold on the aggregation

score; any pixels in image regions whose aggregation scores pass the threshold are passed

on to the next cascade phase, and all other pixels are discarded. Processing of an individual

image is illustrated in Figure 4.5 and contrasted with the standard procedure of classifying

images without aggregation-sensitive training. The key difference is that at each cascade

phase we aggregate pixel classification scores and use the aggregation scores to determine

which pixels pass to the next cascade phase.

Consider how this scheme would handle the earlier example of a classifier which pro-

duces false positive pixels finely scattered among the background, versus a classifier whose

false positive pixels are concentrated in small regions of the image. In both cases, the false

positive pixels would produce relatively high classifier scores. For the first classifier, each

of the aggregation filter scores {ag(bθθθ, ql
−

, W )} corresponding to background portions of

the image would be nonzero, but relatively low since any particular rectangle in the back-

ground region of the image likely contains few high-scoring background pixels. Therefore,

it will be easy to determine a threshold on the aggregation score which rejects most of

the aggregation boxes covering background sections of the image, while retaining most

of the boxes covering the object. In the second case, most of the aggregation scores for

background image locations will be zero, but for the image locations ql
−

covering the con-

centration of high-scoring background pixels, the aggregation score will be high, making it

difficult to determine a threshold which rejects those boxes while retaining those covering

the object.
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(a) InputImage (b) Pixel Scores (c) Pixel Scores

(d) Thresholded Pixel Scores (e) Aggregation Scores

(f) Thresholded Aggregation Scores

(g) Pixels Inside The Boxes

Figure 4.5: An example of the differences in how images are processed with and without aggregation-sensitive training. The input
image is shown in Figure 4.5(a); the second column shows the steps in classifying an image with no aggregation-sensitive training, and
the third column shows the steps in classifying an image with aggregation-sensitive training. In the former case, we use a pixel-level
classifier to classify each of the pixels in the image (Figure 4.5(b)), and threshold those classifier scores to determine which pixels are
discarded (Figure 4.5(d), black pixels) and which are passed on to the next cascade phase (white); in the latter case, we use a pixel-level
classifier to classify each of the pixels in the image (Figure 4.5(c)), sum these scores using an aggregation filter(Figure 4.5(e)), threshold
the aggregation scores (Figure 4.5(f)), and pass pixels on to the next cascade phase only if they lie inside at least one aggregation box
that passed the threshold (Figure 4.5(g), white pixels).
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Parameter Notation How Set Where Dis-
cussed

Part Classification
Fixed Detection Rate Thresh-
old

θ Manually set to enforce very
low fnp

Section 3.5.4

OR Misclassification Costs cfp,cfn Manually set to strongly en-
courage very low false nega-
tives and low false positives.

Section 4.3

Relative Probe Center Place-
ment In An Aperture

∆ Manually set so that the oper-
ators cover the whole aperture

Sections 3.5.2,
3.6.2

Aperture Sizes r(∆) Automatically. Rings of
probe centers are added to the
aperture.

Sections 3.5.2,
3.6.2

Aggregation
Aggregation Filter Size [bθθθwbθθθh] Automatically from object

bounding boxes in training
images

Section 3.5.5

Table 4.2: This table lists the various parameters which control the behavior of cascades trained with aggregation-sensitive part classifiers.

In summary, our strategy for optimizing part classification and aggregation in a single

procedure amounts to growing a decision tree which attempts to discriminate between pix-

els in the training images, and pruning the tree to discriminate between boxes of pixels in

the holdout images.

Figure 4.6 shows block diagrams that compare the structure of the classifier cascades

as described in Chapter 3, Section 4.1, and Section 4.2. Also, Table 4.2 summarizes the

parameters relating to part classification and aggregation that must be manually set or au-

tomatically estimated during training to use aggregation-sensitive part classifiers.

4.3 Alternative ROC Techniques

A drawback of our fixed detection rate pruning strategy is illustrated in Figure 4.7. An ROC

curve is computed for the classifier scores for the edge pixels in in Figure 3.8(a). Fixed

detection rate pruning is based on grading ROC curves and selecting a decision threshold

by focusing on a single operating point, (fp, θ ∗ np+) and using that point to grade the

ROC curve and select a decision threshold. The parameter θ must be set by the user.

Consider operating points on the curve (0.9879, 0.9795) (in red) and (0.7823, 0.9774) (in
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(a) Default

(b) Edge Operator Probes

(c) Aggregation Sensitive Part Classifier Training

Figure 4.6: Block diagrams comparing the computational organization of the classifier cascades described in Chapter 3 (Figure 4.2),
Section 4.1 (Figure 4.2), and Section 4.2 (Figure 4.2).
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Figure 4.7: An illustration of the inflexibility of using a fixed detection rate criterion for grading an ROC curve and selecting an operating
point. The green point, (0.9879,0.9795), has a significantly higher false positive rate than the red point, (0.7823,0.9774), although their
true positive rates are very similar. If the true positive threshold is set to the higher of the two, an operating point with significantly
higher false positive rate will be selected.

green) corresponding to two very similar thresholds θ = 0.9795 and θ = 0.9774. For us,

the difference between the true positive rates for the two operating points is insignificant,

but the difference between the false positive rates is substantial. In particular, while the

false positive rate for the green operating point (78%) may not be impressive for a stand-

alone classifier, removing 22% of the background pixels from images can represent good

progress for one classifier in a sequence. Meanwhile, the red operating point represents a

classifier that is having practically no impact at all– almost none (1.3%) of the background

pixels are discarded by the cascade, and almost none (2%) of the object pixels are discarded

either.

The inability to select the green operating point over the red operating point at run time

is a limitation of our fixed detection rate scheme. In particular, if the user sets θ = 0.9795,

then the red operating point will be selected, even though the green operating point has

a very similar true positive rate and a far superior false positive rate. In fact, the CROC

plots showing pixel classification results for the cart and chair (Figure 3.12(c) and 3.12(d))

illustrate the opposite side of the problem. There, we set θ = .98, meaning that 2% of the

object pixels were discarded by the first classifier in the cascade, and of the 98% remaining,

2% were discarded by the second classifier in the cascade, and so on. This is why, for

successive classifiers in the cascade (moving from right to left on the CROC plot), the true

positive rate dips from θ to θ ∗ θ to θ3 and so on. The point is that even if each of the ROC

curves for those classifiers contained operating points (fp + ε, 1) corresponding to very

similar false positive rates fp + ε, but a perfect true positive rate of 100%, those superior

operating points would not be selected by the fixed detection rate threshold function.
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We overcome the brittleness of fixed-detection-rate pruning by considering alternative

approaches for ROC grading and threshold determination based on a model of misclassifi-

cation risk. In this model, each misclassification error incurs a constant numerical cost, and

our goal is to find the decision tree which minimizes the sum of all costs on the training set.

Specifically, the cost incurred by each false negative is cfn, and the cost of each false

positive is cfp. These penalties encode how important the two types of mistakes are in the

overall context of the recognition algorithm. For example, consider a recognition scenario

in which a part classifier classifies edge pixels in the scene, and passes the results to an

aggregation algorithm which is known to be highly robust to false positive edge pixels, but

whose performance decays dramatically if more than a few edge pixels belonging to the

target object have been accidentally discarded by the part classifier. In this case, the false

positive cost cfp would be relatively low, and cfn would be relatively high. In this example,

the costs can either be set by hand or estimated using training data. For instance, a large

set of simulated part classification results can be generated corresponding to a range of

false positive and false negative rates, and each of these simulated data sets are then given

as input to the aggregation step. The results are evaluated to determine how aggregation

performance degrades with different levels of false positives and false negatives.

Here we explore two techniques for incorporating misclassification costs into pruning.

The first, called cost-based ROC analysis, assumes that good estimates of cfp and cfn are

known a priori [14] [113] [27]. In other words, cost-based ROC analysis assumes that

the impact of individual misclassification errors on overall system performance is known at

training time. The second technique, called area-under-the-ROC-based (or AUROC-based)

analysis [90] [15], assumes that the real, underlying cfp and cfn are unknown at training

time and optimizes the decision tree to produce low total costs for all possible values of cfp

and cfn.

In more detail, cost-based ROC analysis sets the decision threshold so that it corre-

sponds to the operating point (fp, tp) which minimizes the sum of costs c tot = cfp ∗ fp +

cfn ∗ fn. The sum of costs ctot is the ROC grading criterion. In the Figure 4.7 example

given earlier, the green operating point has a lower sum of costs than the red operating point

for any setting of costs such that cfn ≥ cfp ∗ .0102. A different sort of cost-based pruning

was presented in a paper by Bradford et al [14]. There, each leaf of the tree contains a bi-

nary classification rather than a continuous score, so that when the holdout set is classified

by the tree, each leaf l contains some number fpl of false positives and some number fnl

of false negatives. Subtrees are replaced with a leaf l2 if the sum of costs fnl2 + fpl2 is
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less than the sum of all local costs fnl + fpl for all leaves l in the subtree. In other words,

pruning is based on a criterion that is local to the subtree being pruned, while in our case

the subtree is pruned based a global measure of the performance of the entire decision tree.

AUROC-based pruning, on the other hand, uses the area under the ROC curve as a

grading criterion during pruning, following Bradley [15] and Provost et al. [90] who used

the area under the curve to assign an overall quality measure to a variety of classifiers. The

area under the curve provides a measure of the sum of all misclassification costs for all

possible settings of cfp and cfn. While AUROC provides an ROC grading criterion, it does

not imply a straightforward approach for selecting operating points, as the fixed detection

rate and cost-based methods do. In our experiments in Chapter 5, when we use AUROC to

grade ROC curves, we employ a cost-based threshold function.

In summary, the three ROC grading criteria we consider can be written mathematically

by representing the ROC curve as a function r which maps false positive rates to their

corresponding true positive rates along the curve. The three criteria are:

• Fixed detection rate. grade(r) = fp | r(fp) = θ ∗ tp

• Cost-based. grade(r) = minfp cfp ∗ fp + cfn ∗ (np+ − r(fp))

• AUROC-based. grade(r) =
∫

fp
r(fp)

Additionally, since our pruning procedure consists of greedily increasing these criteria

by discarding subtrees, we can visualize what kind of effect the pruning procedure is trying

to make on the ROC curve, given the different grading criteria. Illustrations of these effects

are shown in Figure 4.8. When the grading criterion is based on a fixed detection rate

(Figure 4.8(a)), pruning isolates the operating point for a particular true positive rate (shown

“X”) and tries to push that point toward a lower false positive rate. For an AUROC-based

grading criterion (Figure 4.8(c)), we are trying to increase the area under the ROC curve.

For cost-based grading (Figure 4.8(b)), we impose a cost function ctot(fp, tp) = cfp ∗ fp+

(np+ − tp) ∗ fn over the plane of all possible false positive rates and true positive rates.

The point along the curve which minimizes the cost (shown “X”) is moved toward lower

cost.
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(c) AUROC

Figure 4.8: Schematic of how the ROC criteria improve an ROC curve. Figure 4.8(a): Fixed detection rate optimization focuses on
moving the operating point for a particular detection rate (here 96%) toward lower false positives. Figure 4.8(b): Cost-based optimization
imposes a cost function on the plane of all possible false positive and true positive rates based on cfp and cfn (here, .4 and .6). Points
with low costs are in black, high costs are in white. The point along the curve which minimizes this function, here (0.4736,0.8552), is
moved toward lower cost. Figure 4.8(c): AUROC-based optimization tries to increase the area under the curve.
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Chapter 5

Experiments

In this chapter, we present a set of experiments which explore the performance of part

classifiers and aggregation schemes based on the baseline algorithm presented in Chapter

3 and the extensions presented in Chapter 4. We test the extensions on the “ladder in the

lab” image set shown in the top row of Figure 3.13 and present the results as cascade ROC

curves for pixel-level detection rates and box-level detection rates. Additionally, we present

similar results on other image sets containing a stool.

These experiments illustrate a number of advantages of the extensions in Chapter 4.

In Section 5.3 we show that edge operator probes can enable bottom-up, shape-based lo-

calization in images with weak edges. Based on an initial family of edge operators, we

train classifier cascades which are able to discard most pixels among the background in

novel images while retaining a high percentage of pixels on the object. In Section 5.4 we

present results that show that aggregation-sensitive part classifier training makes box-level

summary of classified pixels more reliable than if aggregation and part classification were

trained as two separate modules. Furthermore, Section 5.6 summarizes an empirical com-

parison of the three ROC optimization schemes presented in Section 4.3, which conforms

to our intuition that AUROC-based and cost-based optimization can be more flexible and

converge to favorable operating points quickly.

In Sections 5.3 and 5.4 we observe that the performance of cascades of edge opera-

tor probes, with or without aggregation-sensitive training, degrade when the test images

contain dramatically new backgrounds, new object scales, or occlusions not present in the

training data. This follows our intuition that the cascades are tuned to specific objects and

backgrounds. Section 5.3 also shows that training pixel classification cascades and aggre-
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gators separately can lead to unpredictable aggregation performance. Section 5.8 describes

why aggregation-sensitive training is difficult to apply to image sets in which the object

takes up a large percentage of the image. Section 5.7 explains that the performance of cost-

based classifier cascades can be sensitive to parameters related to misclassification costs

and cascade construction.

We also present experiments that point out two overall characteristics of our algorithms.

First, Section 5.5 shows that the training data class distribution– that is, the relative percent-

age of object and background examples in the tree-growing and holdout sets– can have a

major impact on classification performance. Then, Section 5.9 presents results which sug-

gest that the performance of edge probe cascades can be compromised by overly-aggressive

feature selection.

First, Sections 5.1 and 5.2 describe the image sets and evaluation criteria used in these

experiments.

5.1 Data

As can be seen in Table 3.13, bottom row, the lab images were the most challenging for the

baseline algorithm in terms of false positive pixels; a cascade of edge probes was able to

remove about 80% of all background edge pixels from the lab images, compared to roughly

90% in the images of the ladder in other environments. For this reason, we chose to evaluate

variants to our baseline algorithm using this set of images. To review, we took 122 lab

images by placing the ladder in front of a cluttered lab space and taking images covering

a range of ladder poses, camera poses, and clutter arrangements. The camera translated

from one side of the space to the other between views; the elevation of the camera varied

between 1.6m and 1.75m; and once every five views the ladder was rotated in place and

the clutter objects were shuffled. More example images from the lab data set are shown in

Figure 5.1.

We partitioned the image set into a tree-growing set of 55 images, a holdout set of 55

images, and a test set of 12 images. We trained cascades of edge probes and aggregation

filters using the tree-growing and holdout sets; results in terms of pixel-level and box-level

detection rates for the cascade phases are reported as cascade ROC curves.

For a second set of images, we took a set of 20 videos of a barstool at various viewpoints

(Figure 5.2). As in the ladder images, the clutter objects shuffle between video clips, and
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Figure 5.1: Example images of the ladder drawn from the lab image set.

the stool rotates on the floor, but the scale of the object does not vary more than about

15% across all frames. We used a 2-frame optical flow tracker to label the position of the

stool in each frame of the videos. The videos are partitioned into five categories: the first

is a set of 7 video sequences containing images of the stool in front of minimal internal

clutter1(Figure 5.2(a) and 5.2(b)); the second set of 4 videos show the object in front of

more challenging interior clutter (Figure 5.2(c)); in the third image set, the stool is slightly

occluded (Figure 5.2(d)); in the fourth, the stool appears at a scale that differs from the scale

range seen in training images (Figure 5.2(e)); in the fifth, the stool is in another part of the

room (Figure 5.2(f)); and in the sixth, the stool is in a different set of rooms altogether

(Figures 5.2(g) and 5.2(h)). Call these image sets the “low-internal-clutter,” “high-internal-

clutter,” “occlusion,” “scale,” “other side,” and “other room” images respectively. We used

these images as a motivation for using edge operator probes rather than edge probes as

image features, since some of the edges on the target object are quite weak. Here, we

employ two training sets of varying complexity to understand how our techniques respond

to variations in clutter characteristics between training and test images. In particular, the

first training set consists of a subsest of the low-internal-clutter videos, and the second is a

collection of low-internal-clutter and high-internal-clutter images.

5.2 Evaluation

For each experiment, we extract features from the training images and use them to opti-

mize part classifiers and aggregation filters. When we test the classifiers and aggregation

steps on test images, we evaluate the performance of each phase of the cascade in terms

of part classification and aggregation. More specifically, we pass each classifier in the part
1“Internal clutter” refers to clutter which appears through holes in the object, for example between the

legs and leg supports of the stool.

105



(a) Low Interior Clutter (b) Low Interior Clutter

(c) Higher Interior Clutter (d) Occlusion

(e) Scale Variation (f) Different Part Of The Room

(g) Other Room 1 (h) Other Room 2

Figure 5.2: Example images of the stool. Figure 5.2(a) shows a typical image in the training set. The rest are images from various
test sets: minimal interior clutter (Figure 5.2(b)), higher interior clutter (Figure 5.2(c)), occlusion (Figure 5.2(d)), different scale (Figure
5.2(e)), different part of the same room (Figure 5.2(f)), and different rooms (Figure 5.2(g) and 5.2(h)).
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(a) (b)

Figure 5.3: Example image of the stool with its associated labeling. Figure 5.3(a) shows the input image, and white pixels in Figure
5.3(b) are labelled as belonging to the target object.

classifier cascade over the image in sequence. For the kth cascade phase, we evaluate the

percentage of true positive pixels versus percent of false positive pixels for a classifier cas-

cade consisting of phases 1 through k. Given those true positive and false positive pixels,

we scan an aggregation filter over the image in order to evaluate how well an aggrega-

tion filter would perform if the part classifier cascade only consisted of the first k phases.

Aggregation performance is plotted in terms of percentage of true positive boxes– that is,

the percentage of bounding boxes surrounding the target object that were identified as an

instance of the target object– and number of false positive boxes.

For each test image, we evaluate the number of true positive and false positive pixels

by referring to a version of the image whose pixels have been hand-labeled as belonging to

the object or background. However, evaluating the rates of true positive and false positive

boxes is slightly less straightforward. In particular, if the region of the image in which

an instance of the target object is detected overlaps the true target object region, but only

partially, it is unclear whether to count it as a true positive box or a false positive box. In

these experiments, we count a bounding box as a true positive if it overlaps with the true

bounding box of the target object by 75% or more.

5.3 Edge Operator Probes

In this experiment we tested the use of edge operator probes in training a pixel-level classi-

fier cascade. Aggregation-sensitive training was not employed, i.e. we trained the cascade

of classifiers to classify individual image pixels without using the modification in Sec-

tion 4.2. The results of these experiments show that on novel test images taken in similar
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Figure 5.4: The set of 32 edge operators selected using the reconstruction-based algorithm in Section 4.1.1 for image features on the
stool images.

environments to the training images, cascades of edge operator probes are effective at iden-

tifying a high percentage of object pixels and discarding a high percentage of background

pixels. Also, our results show that applying an aggregation filter to an image classified by

a cascade of edge operator probes can result in high box-level localization performance if

enough training data is available, but when training data is limited, the aggregation perfor-

mance is unpredictable. Also, our results indicate that the pixel classification performance

of a cascade of edge operator probes decays gracefully as the test images diverge farther

from the training images.

We examine pixel-level classification performance across changes in clutter character-

istics in the test images; in particular, we train a pixel-level classifier cascade on the stool

images with low internal clutter (Figure 5.2(a)) and evaluate the classification performance

on the different categories of test images. A total of 266 training images were gathered

by selecting every fifth frame from a set of four videos of the stool in front of minimal

internal clutter. For test images, we gathered every fifth frame of all the videos in each of

the 8 stool image categories. The number of test images in these categories are indicated

in Figure 5.6(a). Additionally, we trained another cascade on both low-internal-clutter and

higher-internal-clutter images (Figure 5.2(a) and 5.2(c)). In this case, there were 466 train-

ing images, gathered by selecting every tenth frame from a collection of four low-internal-

clutter videos and three high-internal-clutter videos. The number of test images in each

image category for this cascade is listed in Figure 5.6(b).
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(a) (b) (c)

Figure 5.5: Examples of how some of the selected edge operators respond to the input image in Figure 5.3(a). Figures 5.5(a), 5.5(b), and
5.5(c) show the responses of the operators in (row,column) (1,5), (3,4), (4,8) of Figure 5.4.

We selected features using the techniques in Section 4.1.1. In particular, we began with

a set of 640 edge operators corresponding to all possible combinations of the following pa-

rameter values: σx = {2.1, 3.3, 5.1, 6.3, 8.1, 9.3, 11.1, 12.30},σy = σx∗{.1, .32, .55, .77, 1.0},

φ = {0, .8, 1.6, 2.39, 3.19, 3.99, 4.79, 5.59}, and derivative with respect to x and y. We re-

moved edge operators using Algorithm 4, setting the correlation threshold h to .8, and

randomly selecting a set of 50 images from the low-internal-clutter training set (Figure

5.2(a)) for the representative images T . The resulting set of 32 edge operators were used

during training to form operator-offset pairs (See Figure 5.4 and Figure 5.5). When training

each cascade phase, we applied the filter method described in Section 4 to reduce the full

set of operator-offset pairs to the 5 which maximized the discrimination criterion. Misclas-

sification costs were set to (cfp, cfn) = (.01, .99).

Pixel classification results for the two cascades are plotted and summarized in Figure

5.6, and an anecdotal result on a typical image for the low- and high-internal-clutter cascade

is shown in Figure 5.7. Also, pixel and object true and false positive rates after the final

cascade phase are summarized in Table 5.1. Note that at as more phases are added to the

cascade, more and more background pixels are discarded, and a high percentage of pixels

on the stool remain in the image. After pixel classification, it is possible to post-process the

result to remove isolated false positives, for example by median filtering the image (Figure

5.7, bottom right).

Looking at each graph in Figure 5.6 individually, we see that for each type of test image,

the cascades are able to filter out 90% to 95% of all false positive pixels from the images,

and about 50-70% of object pixels in images similar to the training images (the +marks

in Figure 5.6(a), +and *in Figure 5.6(b)) are retained. True positive rates decay as the

divergence between test images and training images increases; for example, vary between

the image types: for example, in both cases the true positive rates for images taken in other

rooms (3) and on the other side of the room (2) are lower than true positive rates for images
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Pixel CROC Plot: Training on Low Internal Clutter

training                (N= 266)
low internal clutter    (N=  98)
higher internal clutter (N= 193)
other side of room      (N=  67)
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occlusion               (N=  29)

(a) Training on Low-Internal-Clutter Images
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Pixel CROC Plot: Training on Low and High Internal Clutter

training                (N= 446)
low internal clutter    (N=  98)
higher internal clutter (N=  37)
other side of room      (N=  67)
other rooms             (N= 678)
scale                   (N= 130)
occlusion               (N=  29)

(b) Training on Low- and High-Internal-Clutter Images

Image Type Low Int. Clutter High Int. Clutter
TP FP TP FP

Training 0.686 0.042 0.719 0.075
Low Int. Clutter 0.404 0.040 0.638 0.069
High Int. Clutter 0.382 0.044 0.590 0.075

Other Side Of Room 0.108 0.042 0.194 0.071
Other Rooms 0.184 0.061 0.363 0.123

Scale 0.330 0.044 0.641 0.076
Occlusion 0.434 0.047 0.600 0.082

(c) Summary

Figure 5.6: Pixel CROC plots for classifier cascades trained using edge operator probes and cost-based optimization. Each point
corresponds to a pixel detection operating point for the sets of test images. Figure 5.6(a) show results for a cascade trained strictly on
low-internal-clutter images, and Figure 5.6(b) shows results for a cascade trained on low- and high-internal clutter images. The number
of images in the training and test sets is indicated in the legend. Figure 5.6(c) summarizes the pixel true positive and false positive rates
achieved by the low-internal-clutter and high-internal-clutter cascades on the various image types.
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Figure 5.7: Example of pixel classification results at many cascade phases. The input image is shown at top left; the next ten images (in
left-to-right, top-to-bottom sequence) show pixel classification results for the pixel classification cascade described in Section 5.3. Green
pixels are classified as “object.” Shown are the results after the following cascade phases: 1,2,8,9,10,11,12,13,17,26. The last photo in
the sequence (bottom right) shows a median-filtered version of the final pixel result (bottom center).
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with varying scale (∇) or occlusion (4). The true positive rates for the scaled and occluded

images are in turn the same as, or lower than, the images with little scale changes with low

internal clutter (+) or higher internal clutter (*). This conforms to our intuition that since

our cascades are discriminative, they are tuned to the specific objects and backgrounds they

are trained on, and are not designed specifically to generalize to new conditions.

Between the two graphs, we see the predictable result that for the cascade trained on

high- and low-internal-clutter images (Figure 5.6(b)) the true positive rate on high-internal-

clutter images (*) does not decay with respect to the true positive rate on low-internal-

clutter images (+) the way it does in the low-internal-clutter cascade. This is to be expected

because the high-internal-clutter images are present in the training images. Interestingly,

however, true positive rates for all types of images increases significantly in the low-and-

high-internal-clutter cascade; for example, about 60% of the object pixels in the less chal-

lenging images (+,*,∇,4) are retained, versus about 40% in the low-internal-clutter case.

This is likely due to the fact that almost twice as many training images (446 vs. 266) were

used to train the cascade depicted in Figure 5.6(b).

Box-level classification rates are shown in Figure 5.8 and 5.9. To review, at each cas-

cade phase we first screen each test image through the pixel classifier at that phase, arriving

at a binary classification for each pixel. We then scan the classified image with an aggrega-

tion filter that returns the number of positively-classified pixels inside a bounding box. By

thresholding this aggregation score, we arrive at box-level localizations of object instances

in the test image. We arrive at a threshold for the sum of pixel scores using aggregation

scores from the training images; specifically, we scan the training images with the aggrega-

tion filter and record the aggregation scores for box locations which cover the target object,

and box locations covering the background. We select the aggregation score threshold us-

ing a fixed detection rate criterion: that is, we select the aggregation score threshold so that

a very high percentage of true positive boxes in the training images (here, 98%) pass the

threshold. Each plotted point shows an operating point for a box-level classifier applied

to the classified image after some number of pixel-level classification cascade phases. For

example, the point marked “1” at (9.68,0.83) represents the results of applying the aggre-

gation filter to the results of applying a single-phase pixel classification cascade to high-

internal-clutter images. The point marked “2” at (7.69,0.86) shows the aggregation filter

performance when applied to the same images classified by a two-phase pixel classification

cascade.

Consider the results on the low-internal-clutter cascade (Figure 5.8). The most impor-
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Box CROC Plot: Training on Low−Internal−Clutter

low internal clutter    (N=   98)
higher internal clutter (N=   193)
other side of room      (N=   67)
other rooms             (N=   235)
scale                   (N=   130)
occlusion               (N=   29)

Image Type Phase 6 Phase 35
TP FP TP FP

Low Int. Clutter 0.980 0.673 0.296 0
High Int. Clutter 0.731 1.109 0.207 0

Other Side Of Room 0.403 0.045 0 0.328
Other Rooms 0.782 0.382 0.021 0.001

Scale 0.7 1.3 0 0
Occlusion 0 2 0 0

Figure 5.8: Box CROC plots for classifier cascades trained using edge operator probes and cost-based optimization. Each point corre-
sponds to a box detection operating point for the sets of test images. Which phase of the cascade the point corresponds to is indicated
by a number below or beside it. A range of numbers in brackets indicates that the cascade maintained the same number of false positive
boxes and true positive boxes over the range of phases indicated. The number of images in the training and test sets is indicated in the
legend. The table lists the final true positive and false positive rates for the various image types.
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low internal clutter    (N=   98)
higher internal clutter (N=   37)
other side of room      (N=   67)
other rooms             (N=   678)
scale                   (N=   130)
occlusion               (N=   29)

10 
10 

10 10 
10 10 

Image Type Phase 10 Phase 36
TP FP TP FP

Low Int. Clutter 0.990 1.061 0.888 0.327
High Int. Clutter 0.973 5.514 0.676 1

Other Side Of Room 0.896 1.358 0 0.149
Other Rooms 0.951 2.459 0.286 0.078

Scale 0.985 3.846 0.785 0.546
Occlusion 0.966 5.379 0.034 1.724

Figure 5.9: Box CROC plots for classifier cascades trained using edge operator probes and cost-based optimization. Each point corre-
sponds to a box detection operating point for the sets of test images. Which phase of the cascade the point corresponds to is indicated
by a number below or beside it. A range of numbers in brackets indicates that the cascade maintained the same number of false positive
boxes and true positive boxes over the range of phases indicated. The number of images in the training and test sets is indicated in the
legend. True positive and false positive rates after phases 10 and 36 are summarized in the table.
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(a) InputImage (b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 5.10: An anecdotal result of classifying the image in Figure 5.10(a) using a cascade of edge operator probes without aggregation-
sensitive part classification. The left column shows classification results after a single cascade phase, and the right column shows the
results after the 8th and final cascade phase. First row: Each pixel is assigned a pixel classifier score. Second row: We threshold that
score to determine which pixels are discarded and which move on to the next cascade phase. Third row: Given a set of pixels which
have passed the threshold, we scan the image with an aggregation filter which adds up the number of pixels inside an object-sized box.
Here, each pixel represents the aggregation score of a bounding box whose upper lefthand corner is anchored at the pixel. Fourth row:
The result of applying non-maximum suppression to the images in the third row.
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tant point to note is that at first, adding pixel classification phases to the cascade helps

box classification performance, but in many cases too many pixel classification phases can

actually hurt box classification performance. As a concrete example, compare the box

classification performance of aggregation filters which follow two different pixel classifier

cascades: the first contains only six phases, and the other contains the full set of 35 phases.

The first aggregation filter attains good classification results on many of the image types

(see the points in Figure 5.8 marked “6”): for example, true positive rates of 98%, 72%,

70%, and 79% on low-internal clutter, high-internal-clutter, scale, and other room image

sets respectively. The second aggregation filter (see the points marked “35”) does much

worse, missing most true positives in most images. The reason for the performance dropoff

is that the threshold for accepting an aggregation score in a test image as an object instance

is set by the aggregation scores on training images; that is, we count the number of true

positive pixels inside boxes covering the object in training images, and set the aggregation

score threshold so that it is just below a high percentage of those scores. Since the num-

ber of true positive pixels in the training images is dramatically higher than the number

of true positive pixels in the test images at later cascade phases (see Figure 5.6(a)), the

aggregation score threshold will be unrealistically high. However, these results illustrate

two points. First, that aggregation filters can effectively localize the object after only a few

cascade phases, and second, that the performance of the aggregation filter can be poor if

the aggregation threshold is unrealistically high.

Turning to the low-and-high-internal-clutter cascade (Figure 5.6(b)), we see that box

classification performance improves dramatically. In particular, after the full set of 36

cascade phases, the low-internal-clutter images (+) achieve a true positive rate near 90%

with about .5 false positive boxes per image. Performance on the higher-internal-clutter

images (*) and scale images (∇) for the full cascade is lower but still reasonable. For the

images of occlusion (4), other side of the room (2), and other rooms (3), we see the

same effect as in Figure 5.6(a): for some of the early cascade phases, box classification is

reasonably effective, and in later phases the aggregation score threshold is unreasonably

high.

Overall, this experiment indicates that cascades of edge operator probes can effectively

discriminate between object pixels and background pixels in real images. Furthermore,

joining these cascades with aggregation filters must be done with care for good perfor-

mance.
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5.4 Edge Operator Probes And Aggregation-Sensitive Part

Classifier Training

This experiment addresses the use of edge operator probes (Section 4.1), together with

aggregation-sensitive part classifier training (Section 4.2. We show that effective object-

level localization can be achieved by coupling the optimization of part classifiers with ag-

gregation filters. Our results show that applying a pixel-level classifier and aggregation

filter at each cascade phase can effectively eliminate large portions of the image from con-

sideration in a single step. Our results also indicate that the performance of cascades using

these extensions degrade when novel occlusions and changes in scale are present at run

time, and that while the cascades correctly identify the portion of the image containing

the object, care must be taken to not trigger multiple, overlapping object instances in that

region.

At each cascade phase we first use the feature selection strategies from Section 4.1.1 to

select a set of operator-offset pairs, and use edge operator probes corresponding to those

operator-offset pairs as image features. We use the images in the tree-growing set to build

a decision tree to discriminate object pixels from background pixels based on the edge

operator probe values. Then, we compute classifier scores for each pixel in the holdout

images and compute aggregation filter scores for each background region and foreground

region of those images by summing the pixel classification scores. Subtrees are removed

from the decision tree if doing so improves an ROC grading criterion on the ROC curve

of aggregation filter scores. Once the tree has been pruned, we discard all pixels from the

training images if they are not inside any retained bounding boxes. At run time, we scan

the image with the pixel classifier and aggregation filter for each cascade phase in turn.

The image features and feature selection process were the same as for the experiment

in Section 5.3. That is, we used the 32 edge operators shown in Figure 5.4, the same filter

method for selecting features at each cascade phase, and the same number (5) of operator-

offset pairs per cascade phase.

We trained three different classifier cascades on the low-internal-clutter image set. Each

cascade used a different ROC optimization scheme to train decision trees. For the cascade

based on the fixed detection rate criterion, our target true positive rate for each classifier

in the cascade is .98, and if a classifier fails to reduces the number of false positive object

instances over all training images by at least 1, we discard that classifier and train a classifier

using image features from the the next aperture size. We employed misclassification costs
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(cfp, cfn) = (.01, .99) to optimize a cascade which used the cost-based criterion. For the

cascade based on optimizing the AUROC criterion, we selected operating points on ROC

curves by finding the point on the curve which minimizes the sum of costs (Eq. 4.3), with

the same misclassification costs as in the cost-based optimization cascade. The only major

difference between the setup of this experiment and that of Section 5.3 is that the latter

trained pixel classification cascades first and applied aggregation filters post facto, while

here we train pixel classifiers and aggregation filters together.

Pixel classification results are shown for the three cascades in Figure 5.11, and box

classification rates are shown in Figure 5.12. Also, pixel and box classification rates are

summarized in Table 5.1 and compared with similar cascades trained without aggregation

sensitivity. For each cascade, for each image set, the number of false positive pixels among

the background is reduced to about 10%, and for most images the percentage of true posi-

tive pixels retained by the cascade is high, between 80% and 100%. Furthermore, each type

of cascade is able to correctly identify the stool in most of the test images with lower in-

ternal clutter and higher internal clutter– in these cases, roughly 80% to 100% of the stools

are correctly identified, with about 2-3 false positive detections per image. The differences

between the three cascades will be discussed in Section 5.6.

The false positive rate in the box classification results is pessimistically high; a typical

example of this illustrated in Figure 5.14(i). Clearly, the boxes identified as instances of

the stool are located in the correct portion of the image; however, there are two very faint

local peaks in the aggregation score in that region, so two instances of the object (which

overlap each other significantly) are returned by the algorithm, triggering a false alarm. In

fact, many of the false alarms triggered in the experiments in this section are of this type–

the aggregation score is only significantly high in the region of the image containing the

object, but because of minor variations in the score they produce multiple peaks which are

picked up by non-maximum suppression. This problem would be alleviated be smarter

post-processing of the aggregation scores.

A typical result is shown in Figure 5.13. The images show the results of classification

by the cascade after 1,2,4,8, and 14 cascade phases; green regions of the image are still

under consideration by the cascade, and all other parts of the image have been discarded.

Note that even after a single cascade phase, large sections of the image have been discarded.

As more steps in the classifier cascade are applied, more false positive boxes are removed

from consideration. Compared to the result shown in Figure 5.10, we see that the cascade

phases here remove false positive pixels in contiguous chunks rather than at scattered image
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Pixel CROC Plot for Cost−based Cascade
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(b) Cost Based
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Pixel CROC Plot for Fixed Detection Rate Cascade
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other rooms             (N= 678)
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occlusion               (N=  29)

(c) Fixed Detection Rate

Image Type Fixed Cost AUROC
TP FP TP FP TP FP

Training 1.000 0.080 1.000 0.091 1.000 0.085
Low Internal Clutter 1.000 0.089 1.000 0.080 1.000 0.074

Higher Internal Clutter 0.846 0.079 0.954 0.082 0.736 0.073
Other Side Of Room 0.301 0.032 0.766 0.077 0.976 0.114

Other Rooms 0.508 0.090 0.738 0.299 0.741 0.398
Scale * * 0.534 0.076 0.135 0.719

Occlusion * * 0.688 0.093 0.127 0.789
(d) Summary

Figure 5.11: Pixel detection CROC curves for classifiers trained using the image features presented in Section 4.1 and aggregation-
sensitive training in Section 4.2, trained on the stool images. Figure 5.11(a): Results for classifier cascades which optimized AUROC,
cost based, and fixed detection rate criteria are shown in Figures 5.11(a), 5.11(b), and 5.11(c) respectively. Table 5.11(d) summarizes the
pixel true positive and false positive rates after the final cascade phase for the three cascade types. The results for the fixed-detection-rate
cascade on the scale and occlusion images were lost in a computer failure.
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(b) Cost Based
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(c) Fixed Detection Rate

Image Type Fixed Cost AUROC
TP FP TP FP TP FP

Training 0.989 2.722 1.000 3.530 1.000 2.639
Low Internal Clutter 0.980 2.429 0.827 2.480 0.959 3.643

Higher Internal Clutter 0.762 3.269 0.881 2.756 0.663 3.109
Other Side Of Room 0.185 1.754 0.284 2.970 0.478 4.299

Other Rooms 0.379 4.586 0.224 8.795 0.226 18.355
Scale * * 0.254 4.031 0.431 8.408

Occlusion * * 0.552 3.207 0.621 4.276
(d) Summary

Figure 5.12: Aggregation CROC plots for classifiers trained using the image features presented in Section 4.1 and aggregation-sensitive
training in Section 4.2, trained on the stool images. Figure 5.12(a): Results for classifier cascades which optimized AUROC, cost based,
and fixed detection rate criteria are shown in Figures 5.12(a), 5.12(b), and 5.12(c) respectively. Figure 5.12(d) summarizes the true
positive and false positive rates for the three cascades after the final cascade phase. The results for the fixed-detection-rate cascade on
the scale and occlusion images were lost in a computer failure.
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Cascade
Testing On Low Clutter Testing On Higher Clutter

Pixel
TP

Pixel
FP

Object
TP

Object
FP

# Test Pixel
TP

Pixel
FP

Object
TP

Object
FP

# Test

EOP, Low
Clutter

0.404 0.040 0.296 0 98 0.382 0.044 0.207 0 193

EOP, High
Clutter

0.638 0.069 0.888 0.327 98 0.590 0.075 0.676 1 37

EOP,
Aggregation-
Sensitive

1.000 0.080 0.827 2.480 98 0.954 0.082 0.881 2.756 193

Testing On Other Side Of Room Testing On Other Rooms

EOP, Low
Clutter

0.108 0.042 0 .328 67 0.184 0.061 0.021 0.001 678

EOP, High
Clutter

0.194 0.071 0 0.149 67 0.363 0.123 0.286 0.078 678

EOP,
Aggregation-
Sensitive

0.766 0.077 0.284 2.970 67 0.738 0.299 0.224 8.795 678

Testing On Scale Testing On Occlusion

EOP, Low
Clutter

0.330 0.044 0 0 130 0.434 0.047 0 0 29

EOP, High
Clutter

0.641 0.076 0.785 0.546 130 0.600 0.082 0.034 1.724 29

EOP,
Aggregation-
Sensitive

0.534 0.076 0.254 4.031 130 0.688 0.093 0.552 3.207 29

Table 5.1: Summary of recognition rates after the final cascade phase for three cascades trained on the stool images using cost-based
pruning. The cascade trained using edge operator probes as image features and low-internal-clutter training images is marked “EOP,
Low Clutter”. The cascade trained with edge operator probe features on low- and high-internal-clutter training images is marked “EOP,
High Clutter.” The cascade trained with edge operator probes and aggregation-sensitive training on the low-internal clutter images is
marked “EOP, Aggregation-Sensitive.” Pixel and object true positive/false positive rates after the last cascade phase are listed as Pixel
TP/FP and Object TP/FP. # Test gives the number of test images of a specific image type.

locations.

However, detection of the object in all cases is significantly worse for the images con-

taining scale deviations from the training images or occlusions. In particular, the cost-based

and AUROC-based cascades only detect the stool in about 20% of the images with scale

variation, with 2-5 false positives per image. The fixed detection rate cascade performs

somewhat better, finding about 65% of the instances of the stool with 3 false positives per

image. Detection performance on the occlusion images is similar. The degradation in per-

formance in these cases is not entirely unexpected since the scale change and occlusion

were not present in the training images, and since training of the part classifier is tightly

coupled with a fixed-size aggregation filter. In particular, since each image is scanned with

one bounding box of a characteristic object size, scale changes in the object mean that this

bounding box is more likely to not cover the entire object or contain more clutter pixels.
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Figure 5.13: Example pixel classification results for a cascade using edge operator probes, aggregation-sensitive part classification, and
fixed detection rate pruning (i.e., Sections 4.1 and 4.2. The input image is shown at top left; the next five images (in left-to-right, top-to-
bottom sequence) show pixel classification results for the pixel classification cascade. Green pixels are classified as “object.” Shown are
the results after the following cascade phases: 1,2,4,8,14.
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(a) InputImage (b) Pixel Scores (c) Pixel Scores

(d) Aggregation Scores (e) Aggregation Scores

(f) Thresholded Aggregation Scores (g) Thresholded Aggregation Scores

(h) Non-Max-Suppressed (i) Non-Max-Suppressed

(j) Pixels Inside The Boxes (k) Pixels Inside The Boxes

Figure 5.14: An example of classifying the image in Figure 5.14(a) with edge operator probes and aggregation-sensitive filtering. The
left column shows the results of classification after a single cascade phase, and the right column shows results after the 12th and final
cascade phase. First row: Each pixel is assigned a pixel-level classification score. Second row: For the aggregation score, the pixel-level
classifier score is summed over object-sized boxes. Each pixel represents the aggregation score of a bounding box whose upper lefthand
corner is anchored at that pixel. Third row: Thresholded aggregation scores. Pixels marked white represent the upper lefthand corner of
a bounding box deemed likely to surround an instance of the object. Fourth row: Aggregation scores after non-maximum suppression.
Note that the image has been reduced to a small number of potential object locations. Fifth row: Pixels marked white are inside at
least one of the bounding boxes which passes the aggregation score threshold (third row). These pixels are passed on for pixel classifier
training at the next cascade phase.
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In summary, this experiment demonstrates that optimizing part classification and ag-

gregation in a coupled way can effectively consolidate pixel classification results into gross

image regions considered most likely to contain the object. This in turn makes object-level

localization of the object easier.

5.5 Training Data Class Distribution

In the experiments in Section 5.3, the number of positive and negative examples used for

training classifiers was equal; in particular, we sampled a fixed number of object pixels and

background pixels from each image and used these examples to train decision trees and

prune them. Here, we experimented with skewing the distribution of positive and negative

examples at training time so that it matches the distribution of object and background pixels

found in the training images. The rationale for doing so is our observation that, in the stool

images, far more of the image is consumed by the background than the object, and that

the variability in the appearance of the background is far greater than that of the object;

therefore, we feel that at training time we should attempt to account for that high variability

and high concentration of background through a larger number of training examples.

In Section 5.3, we extracted a fixed number k of object pixels, and k background pixels,

from each image. Here, instead, we select m percent of the total number of object pixels

from each image, and m percent of the background pixels. Since there are roughly 10

times more background pixels than foreground pixels in each stool image, this means that

at training time there will be roughly 10 times as many negative examples than positive

examples.

Decision trees induced using the skewed set of training examples performed poorly.

That is, these decision trees were either eliminated entirely during the pruning procedure or

failed to generalize well on new images. Using a balanced distribution of training examples

during tree growing and a skewed distribution of examples during pruning worked quite

well, however. Specifically, we selected k object pixels and k background pixels from each

image in the tree-growing set and induced a decision tree as in Section 5.3. Then, we

selected m% of the object pixels and m% of the background pixels from each image in the

holdout set and pruned the tree. We trained a pixel classification cascade using parameters

identical to that of Section 5.3, except for this modification. In the earlier experiment,

8000 object pixels and 8000 background pixels were sampled from each holdout image,

corresponding to roughly 10% and 100% of the two categories of pixels. Here, we selected
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(a) Fixed Detection Rate
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CROC plot for AUROC cascade
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(b) AUROC
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CROC plot for cost−based cascade

training                (N= 266)
low internal clutter    (N=  98)
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(c) Cost-based

Image Type Fixed Cost AUROC
TP FP TP FP TP FP

Training 0.763 0.049 0.718 0.043 0.758 0.083
Low Int. Clutter 0.347 0.048 0.422 0.039 0.558 0.076

Higher Int. Clutter 0.253 0.047 0.384 0.043 0.550 0.085
Other Side Of Room 0.119 0.071 0.094 0.045 0.171 0.069

Other Rooms 0.239 0.089 0.248 0.080 0.325 0.111
Scale 0.316 0.051 0.337 0.044 0.439 0.084

Occlusion 0.245 0.051 0.325 0.047 0.551 0.092
(d) Summary

Figure 5.15: Figure 5.15(c) shows a Pixel CROC plot for a pixel-level classifier cascade identical to the one depicted in Figure 5.8, but
using more negative examples relative to positive examples during pruning. Also shown are analogous CROC plots for cascades trained
using AUROC-based (Figure 5.15(b)) and fixed detection rate (Figure 5.15(a)) pruning. Figure 5.15(d) lists the true positive and false
positive pixel rates for the three cascades after the final cascade phase. Note that the cascades converge to more or less the same true
positive and false positive rates as before, although the ones given more training data does so faster.
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10% of all object pixels, and 10% of all background pixels, or roughly 8000 background

and 800 object pixels, from each holdout image. Pixel classification results are shown

in Figure 5.15. The cascade converges to very similar operating points as the cascade of

Section 5.3, for example 60% true positive rate and 10% false positives on the low-internal-

clutter images, but it does so much faster than the previous cascade. In particular, for

this cascade most false positives are removed from the images within the first few phases,

while for the previous cascade it took several cascade phases to reach similar operating

points. The prevalence of negative examples in the holdout set helps to explain why the

cascade screens false positives from the images so well; in particular, consider the sum of

misclassification costs, cfp ∗ fpp + cfn ∗ fnp, being minimized at pruning time. In this

experiment, since the number of background pixels is so much higher than the number of

object pixels, there will be a greater prevalence of false positives than false negatives, in

other words the ratio of fpp to fnp will tend to be higher than it was in the cascade of

Section 5.3. This means that cfp ∗ fpp will tend to dwarf the contribution of cfn ∗ fnp to

the sum of costs, and the classifier will try to decrease costs by decreasing false positives.

5.6 ROC Optimization Strategies

In this section we present our observations on the experimental performance of cascades

based on fixed detection rate, cost-based, and AUROC-based criteria. We draw our conclu-

sions from the aggregation-sensitive cascades discussed in Section 5.4, the cascades trained

on skewed class distributions in Section 5.5 as well as edge probe cascades trained on the

ladder images. In short, we learned that none of the three ROC optimization schemes

dominated the others in terms of overall classification performance, and that cost-based

and AUROC-based cascades performed very similarly in every experiment. In some cases,

fixed detection rate cascades took many more iterations than AUROC and cost-based cas-

cades to converge to more or less the same performance numbers, pointing to the flexibility

which which the latter two methods are allowed to select operating points. However, as we

report in Section 5.7, the performance of cost-based and AUROC-based cascades can be

sensitive to how their misclassification costs are set.

We trained cascades of edge probes to discriminate between ladder edge pixels and

background edge pixels in the lab images (Figure 3.13). In other words, unlike the previous

experiments in this chapter, we classify binary edges with edge density features rather

than classifying the entire image with edge operators. Neither were the feature selection

126



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of False Positives

P
er

ce
nt

ag
e 

of
 T

ru
e 

P
os

iti
ve

s

Pixel CROC plot

Cost−based               (.748,.157)
Fixed detection rate  (.632,.087)
AUROC                     (.670,.118)

Figure 5.16: A CROC plot of pixel classification results on the ladder images from cascades trained using fixed detection rate, cost-based,
and AUROC-based criteria.

techniques in Section 4.1.1 employed to reduce the number of image features at training

time. We used 55 training images and 55 holdout images of the ladder to train cascade

classifiers with fixed detection rate, cost-based, and AUROC-based optimization criteria.

As in Chapter 3, we set the target detection rate for the fixed detection rate cascade to 98%,

and misclassification costs for the other two cascades was set to (cfp, cfn) = (.01, .99).

Edge pixel classification results for these cascades is plotted in Figure 5.16. The final

results for all three cascades are similar– between 60% and 75% of object pixels are re-

tained, and between about 10% and 15% of edge pixels among the background are false

positives. The fixed detection rate cascade (x) achieves the lowest false positive rate at 9%,

but its true positive rate, at 63%, is lower than it is in the other two cascades. A typical

example showing pixel classification results at many cascade phases by the AUROC cas-

cade is shown in Figure 5.17. Figure 5.18 shows the pixels remaining in contention after

the final cascade phase for each of the three cascades applied to the image in Figure 5.17.

For this image, the fixed detection rate cascade (bottom center image) is able to remove all

the background pixels. However, for all three cascade types the results are similar: a high

percentage of edge pixels among the background are eliminated, and a high percentage of

edge pixels on the object remain.

Each of the three cascades behave similarly on the ladder at training and run time. In

contrast, consider the pixel classification cascades depicted in Figure 5.15. The fixed detec-

tion rate cascade (Figure 5.15(a) makes piecemeal progress toward the goal of discarding

all false positive pixels; it starts with the full set of all false positive pixels and each phase

steadily reduces the size of that set by 5% or so. On the other hand, the cost-based and
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Figure 5.17: An example of edge pixel classification on the ladder at many phases. The input image with overlaid edges is shown at
the upper left; pixel classification results after cascade phases 5,10, and 15 are shown left-to-right, top-to-bottom. Edges which have not
been discarded by the cascade are shown in green.
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(a) Input Edges

(b) Classification Results

Figure 5.18: A comparison of pixel classification results on a typical image from classifier cascades trained with cost-based (left), fixed
detection rate (center), and AUROC (right) criteria. Input edges are shown above.

AUROC-based cascades (Figures 5.15(b) and 5.15(c) remove most of the false positives in

the first phase, and eventually converge to roughly the same operating points as the fixed

detection rate cascade, but in fewer phases. We see similar behavior in the aggregation

filter results shown in 5.12: the phases in the fixed detection rate cascade make steady, even

progress in removing false positives, while the cost-based and AUROC-based cascades stop

at similar operating points, but faster. Our intuition for this behavior is that the cost-based

and AUROC-based cascades have more flexibility in selecting operating points, as argued

in Section 4.3.

5.7 Sensitivity to Parameters

In Algorithm 2 we present a cascade training procedure through which each classifier cor-

responds to an aperture of a particular size. As more classifiers are added to the cascade,

the size of the aperture grows, so that later classifiers in the cascade have access to more

visual features in order to discriminate object pixels from background pixels. However, the

decision to allow only one classifier per aperture size is somewhat arbitrary; in particular,

it is tempting to add a several classifiers per aperture size, only growing the aperture when

the classifiers “run out” of discriminating features inside that aperture to take advantage
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Figure 5.19: Pixel CROC plot for a pixel-level classifier cascade that overfits. For each aperture size, phases are added to the cascade
until the classifiers fail to reduce the false positive rate. The resulting cascade does not generalize to new images as well as cascades
which employ one cascade phase per aperture size. Note the final true positive rate near 50%, compared to 70% in the results listed in
Figure 3.2.

of. Indeed, in the experiments presented in Sections 5.4 and 5.3, we add several classi-

fiers for each aperture size, only increasing the aperture size when a particular classifier

fails to increase its ROC scoring criterion by a given amount. For example, when using

cost-based ROC optimization, if a particular classifier fails to decrease the sum of costs

cfp ∗ fp + cfn ∗ fn by more than a given threshold γ.

Unfortunately, the generalization performance of our pixel-level classifiers are sensitive

to the setting of γ. In particular, if γ is so low that classifiers are added to the cascade even

if they minimally improve their performance criterion, the pixel classification performance

of the cascade on novel images suffers. An example of this phenomenon is illustrated in the

pixel CROC plot shown in Figure 5.19. We trained a pixel classification cascade using the

baseline algorithm presented in Chapter 3, but with one modification: rather than adding

one classifier per aperture to the cascade, we continued to add new classifiers for each

aperture size as long as the new classifiers reduced the false positive rate by any amount.

The cascade was trained until it had added 34 classifiers over the first 8 aperture sizes,

and was then applied to test images for evaluation. Figure 5.19 shows that the cascade

achieves a true positive rate of about 50% with a false positive rate of about 18%; this is a

significantly lower true positive rate at a similar false positive rate than the 74% recorded by

a cascade which is identical except for the fact that it only adds one classifier per aperture

size for a total of 20 cascade phases (see Figure 3.2, row 7).

The intuition for this performance dropoff is that the cascade with many classifiers per

aperture is overfitting. That is, rather than discriminating between characteristics of the
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image features which arise due to the underlying object parts, the classifiers are discrimi-

nating between chance characteristics of the image features that arise due to noise or small

training set size. It is not surprising that adding an arbitrary number of classifiers to the

cascade can lead to overfitting; similar ensemble methods like AdaBoost are now generally

considered prone to overfitting if a large enough number of complex classifiers are added to

the ensemble without taking measures to prevent overfitting. In the experiments involving

aggregation-sensitive training and edge operator probes, we have been able to avoid overfit-

ting by setting the threshold γ which discards classifiers if they fail to improve performance

on the training set by a fixed amount. Unfortunately, setting γ is not necessarily intuitive at

the beginning of an experiment, and doing so requires some trial and error. An alternative

way to guard against overfitting is to partition the set of training images into two subsets:

one set is used to train cascade phases, and the other is used to evaluate the performance

of those phases. Cascade phases which perform poorly on the second set of images are

not added to the cascade. This cross-validation approach to preventing overfitting has been

applied to AdaBoost ensembles, for example in [105].

Another set of parameters which significantly affect performance in cost-based opti-

mization of pixel-level classifiers are the costs for false positives and false negatives, cfp

and cfn. As explained in Section 4.3, given a particular aggregation scheme, we can use

labeled training data to estimate good values for cfp and cfn by generating synthetic part

classification results corresponding to ranges of possible false positive and false negative

rates, then running the aggregation phase on the synthetic data to evaluate how false pos-

itives and false negatives affect the accuracy of aggregation. However, in lieu of such

experiments on the aggregation step, we must set values for cfp and cfn by hand. Improper

settings of these costs can dramatically alter the training performance of the cascade. For

example, imagine that the number of background pixels, np−, is orders of magnitude larger

than the number of object pixels, np+, but that the cost of a false negative is not orders of

magnitude larger than the cost of a false positive. Then a low-cost classifier will simply

be one which classifies any and all pixels as background. Since there are relatively few

false negatives fnp in this case, and the cost of a false negative cfn is not very high, the

contribution of fnp ∗ cfn to the total cost fnp ∗ cfn + fpp ∗ cfp will be insignificant, and

since all pixels are classified as background, the number of false positives fpp is zero. On

the other hand, if cfn is set too high, then the contribution of fnp ∗ cfn will dwarf that of

fpp ∗ cfp to the total cost, leading to classifiers which classify any and all pixels as be-

longing to the object to avoid any false negatives. In practice, cfp and cfn must be set so

that neither extreme situation arises, and this takes some experimentation. We emphasize,
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however, that manually setting cfp and cfn is only necessary if the costs are not provided

based on external factors like aggregation performance.

5.8 Limits to Aggregation-Sensitive Training

Figure 5.14 shows example results of classifying an image with a classifier cascade which

employs aggregation-sensitive filtering. By aggregating raw pixel classifier scores and dis-

carding whole sections of the image which do not give high object-level scores of con-

taining the object, we are able to remove large sections of the image even after the first

classification phase (see Figure 5.14(j)). Discarding many pixels as early in the cascade as

possible is important for tractability reasons. Specifically, as we suggest in Section 3.6.5,

the number of image features does increase as the aperture size grows, but computation

time does not grow intractable because through each classifier phase we discard pixels,

which effectively reduces the number of training examples. If early classifier phases fail

to remove a significant number of pixels from consideration, it is possible that training

later cascade phases could be overwhelmed by the large number of features and training

examples.

Our approach to aggregation-sensitive part classifier training can lead to situations in

which few pixels are discarded early on, especially if the size of the object box is relatively

large with respect to the size of the image. Specifically, we retain pixels for future phases

of pixel classification if they are contained in any of the bounding boxes that pass the ag-

gregation score threshold; if the box covers a large portion of the image, then most of the

pixels will be retained even if only a few possible bounding boxes remain in contention. As

a result, even if the cascade makes progress at removing image locations from considera-

tion at a box level, it might make little progress in reducing the number of pixels that the

pixel classifier must process. An example of this phenomenon is shown in Figure 5.20. A

classifier cascade was trained using edge probes on binary images as image features, and

aggregation-sensitive part classifier training. After several phases, the cascade was largely

successful at removing potential object bounding box locations from consideration in the

training images. Figure 5.20(a) shows a typical training image and Figure 5.20(b) shows

the edges detected in it. After several cascade phases, the image was reduced to the bound-

ing box locations shown in Figure 5.20(c); specifically, the pixels marked white represent

the upper left hand corner of a potential bounding box still under consideration by the cas-

cade. Bounding boxes covering the ladder are still represented– they are in the white blob
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(a) Training Image (b) Input Edges

(c) Bounding Box Locations (d) Remaining Edges

Figure 5.20: An illustration of the fact that aggregation-sensitive part classifier training tends to quickly discard large portions of the
image in early cascade phases only if the object size is small compared to the size of the image. Figure 5.20(a) shows a training image,
and Figure 5.20(b) shows the binary edges extracted from it. Figure 5.20(c) depicts the possible locations of object bounding boxes after
several phases of classification with an aggregation-sensitve classifier cascade. Each white pixel depicts the upper lefthand corner of a
viable bounding box for the object after many cascade phases. An actual bounding box for the object is shown in red to give a sense of
the bounding box size. Note that most of the possible spurious bounding box locations among the background have been removed from
contention, with the exception of the white blob to the right and some of the pixels in the lefthand blob. Figure 5.20(d) shows the edge
pixels which land in at least one of the retained bounding boxes. Note that even though most of the spurious bounding boxes have been
discarded, most of the edge pixels are still present.
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to the left– as well as a sliver of false positive boxes in the blob to the right. At an object

level, most false positives have been removed from the image; however, the number of false

positive pixels still under consideration, shown in Figure 5.20(d), is still high and includes

almost all of the background edge pixels in the image. Each of the pixels shown in Figure

5.20(d) are contained in at least one of the bounding boxes represented in Figure 5.20(c). In

this case early phases in the aggregation-sensitive cascade fail to remove many background

pixels because the bounding box is so large that it only takes a few false positive boxes to

cover all the pixels in the image. Meanwhile, in the stool image, the bounding box size is

so small relative to the size of the image that it is easier to remove whole sections of the

image from consideration.

5.9 Feature Selection For Edge Probes

In Section 4.1.1 we present a filter method for selecting which operator-offset pairs should

be used to train classifiers. Since the number of possible combinations edge operators and

relative probe centers is large, feature selection in the context of edge operator probes is a

matter of necessity. However, it is natural to ask whether feature selection can be useful for

reducing the number of features used to train cascades of edge probes. Since the number

of probe centers grows as the aperture size increases, it would be advantageous computa-

tionally to be able to train classifiers using features drawn from a limited number of probe

centers. However, this experiment suggests that for the edge probes, which are inherently

less expressive features than edge operator probes, good pixel classification performance

requires that a large number of spatial features be available to the classifier at training time.

To show this, we trained two sets of classifier cascades, the only difference between

the two being the number of features used to train the classifiers. In the former case, we

used the full set of relative probe centers at each aperture size to train the classifier for that

aperture; in the latter case, we used the filter method from Section 4.1.1 to pick the 15 most

discriminative relative probe centers and train the classifier based on those features. We

will call the first type of cascade the “all-feature” cascade and the second type of cascade

the “15-feature” cascade. In both cases, we restricted the cascade to have one classifier per

aperture size, due to the overfitting concerns raised in Section 5.7. We trained a total of 6

different cascades: for each of the three ROC optimization strategies presented in Section

4.3, we trained an all-feature cascade and a 15-feature cascade. Figure 5.21 contains one

CROC plot for the fixed detection rate, cost-based, and AUROC-based cascades, showing
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(b) Fixed detection rate
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(c) AUROC

Figure 5.21: Comparison of pixel classification performance for cascades given access to all features (shown “o”) and those given a
subset of 15 features (shown “x”). The features are edge probes, and the ladder image set is the target. CROC plots are given for
cost-based (Figure 5.21(a)), AUROC-based (Figure 5.21(c)), and fixed detection rate (Figure 5.21(b)) cascades.

the pixel classification rates for all-feature cascades (“o”) and 15-feature cascades (“x”).

For the first few cascade phases, the true positive and false positive rates are nearly identical

for the two types of cascades because the total number of probe centers is less than or equal

to 15. But as features from more relative probe centers become available to the all-features

classifier, it continues to discard false positives, while the 15-feature classifier ceases to

make progress.

Thus, pixel classification cascades based on edge probes do not perform well when

feature selection reduces the number of features available for training, while our results in

Sections 5.4 and 5.3 show that classification cascades based on edge operator probes per-

form well when only 5 features are available to each classifier. Our intuition for this is that
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edge operator probes are more expressive than edge probes; besides signaling the presence

or absence of edges in a particular region, edge operator probes signal edge orientation and

scale characteristics. In so doing, they provide more discriminative power to the classifier

in a smaller number of features.

5.10 Conclusions

These experiments have illustrated a number of characteristics of our basic shape-based

localization algorithm from Chapter 3 as well as the extensions presented in Chapter 4. First

and foremost, the experiments show that we can automatically optimize image features, part

classifiers, and aggregators which do an effective job at correctly identifying object pixels

and overall instances in test images taken in similar environments to the test images. They

also show that training the part classifiers and aggregation filters in tandem can lead to more

effective, more predictable localization performance than if the two recognition steps are

optimized separately. We also see from these experiments that the classifiers we derive do

not generalize perfectly to novel test environments that diverge greatly from those present

in the training images. Finally, our cascades can be prone to poor performance if certain

parameters of the cascade construction process are not properly set.
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Chapter 6

Discussion

This chapter discusses previous and future work related to the techniques presented in

Chapters 3 and 4.

6.1 Related Work

In this section we review work related to some key characteristics of our algorithms. In par-

ticular, we address the use of cascades and related methods for building classifiers out of

components; we describe work in computer vision and neuroscience which relates closely

to our paradigm of sparsely probing the image; and we show how aperture problems arise

in other fields and the similarity between our aperture-growing scheme and related ap-

proaches.

6.2 Cascades and Ensembles

One of the major contributions of this thesis involves performing object recognition by

applying a sequence of tuned image processing modules to the image. We refer to compu-

tational architectures of this type as cascades. Researchers in machine learning, computer

vision, and neuroscience have each addressed the use of sequential conjunctions of com-

putational modules for modeling and classification; however, researchers in each field have

attached distinct connotations to the term “cascade.” In this section we delineate the differ-

ent senses of the term in order to clarify our use of it, and compare our cascade technique
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to those of closely related object recognition algorithms.

Recently, several authors [118][68][58] have presented algorithms which use direct

methods to estimate the image locations of objects based on texture cues, and describe

them as cascades. In each of these approaches, a sequence of simple classifiers is trained to

discriminate image patches corresponding to the target object from image patches project-

ing onto the background; a run-time image is processed by applying the simple classifiers

to it in a sequence. More specifically, these approaches are distinguished by two character-

istics. First is that training proceeds in a “sieve” fashion: training data points classified by

the first simple classifier as an instance of the target object are used to train the second sim-

ple classifier; training data classified as clutter by the first simple classifier are discarded. In

this way, the training procedure reduces the training set so that the k-th classifier in the se-

quence focuses on discriminating object data points from clutter data points which have not

been identified as such by the first k − 1 simple classifiers. The second defining character-

istic of these approaches is early stopping at run-time: that is, evaluation of a particular test

image point stops if the k-th simple classifier classifies the point as clutter. This run-time

scheme, which effectively arranges the simple classifiers in a decision list [97], accounts for

the impressive speed of these algorithms; in many cases, most of the test image is quickly

removed from further consideration by the first few simple classifiers, leaving the bulk of

the computation for those portions of the image most similar to the target object.

In contrast, classification architectures referred to as cascades by researchers in the

machine learning community [41][28] possess neither of these characteristics. A series

of simple classifiers is trained sequentially; however, each simple classifier in the series is

trained using all instances of the training data rather than a reduced subset. In both schemes,

the class probabilities output by earlier classifiers in the sequence are concatenated onto the

end of each training instance as though they were additional input features, and the later

classifiers in the cascade are trained on the augmented training set. At run time, each test

instance is classified sequentially by each and every simple classifier in the sequence. While

these cascade schemes do not feature a capability for early stopping, it should be noted that

they were motivated by concerns for training efficiency, not run-time speed. In particular,

cascade-correlation neural networks [28] were presented as a way to incrementally add

hidden units to a neural network in a way that precluded the costly communication of error

signals between many hidden units during training.

The term “cascade” carries a slightly different connotation in the neuroscience litera-

ture. There, the processing of visual signals is modeled in terms of distinct computational
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modules which act in sequence of in parallel. However, models which arrange these mod-

ules in a linear series along the lines of the cascades outlined above are referred to as

discrete staged accounts; cascade processes refer to the parallel, asynchronous processing

of the visual signal by several different computational modules. For example, in [52], the

process of picture naming is modeled in terms of three types of computational modules:

vision modules which associate appearance properties of the image with appearance prop-

erties of known objects; semantic modules which contain information about the function

of and associations between objects; and phonological modules which map the semantic

meaning of the object onto a representation of its name. In a discrete staged model, the im-

age is first processed by the vision modules, the resulting object identities are passed to the

semantic modules, and the resulting semantic information is passed on to the phonological

modules. In a cascade model, however, the image triggers the vision modules, and after

that any number of phonological, semantic, and vision modules may be actively computing

at any point in time.

Cascade methods for classification constitute a special subclass of the more general

category of ensemble methods. Ensemble methods build up a complex classifier from a

collection– an ensemble– of simpler classifiers. Like the boosting family of algorithms[101],

our cascade technique falls into the category of methods for which the training of simple

classifiers is necessarily sequential; that is, the training data for the kth simple classifier

in the sequence has been modified in some way by the first k − 1 simple classifiers that

have been trained. This is in contrast to techniques such as stacked generalization[124] or

bagging[17], in which a collection of simple classifiers may be trained in parallel and com-

bined afterwords. Furthermore, our cascade may be grouped with other ensemble methods

like cascade correlation and cascade generalization[41] which sequentially evaluate the

simple classifiers in the order in which they were trained; in other ensemble methods, in-

cluding boosting and bagging, the simple classifiers may be applied to the test example in

an arbitrary order.

Prior classifier cascades for object recognition typically train each cascade phase to op-

timize a fixed detection rate criterion as we describe in Section 4.3. However, these previous

techniques differ from ours in the design of the classifiers at each phases and the details of

how they are assembled into cascades. In particular, in the Viola-Jones face detector [118]

each cascade phase is an ensemble of simple classifiers. As in our approach, each cas-

cade phase in Viola-Jones is trained using a combination of classification-accuracy-based

and ROC-based criteria; specifically, at each phase, simple classifiers are added to the en-

semble via AdaBoost [101] in order to maximize classification accuracy, but the threshold
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function and training procedure for the cascade phase is affected by a fixed detection rate

criterion. Specifically, simple classifiers are added to the cascade phase until the phase

achieves an operating point (fp, tp) corresponding to user-set target false positive and true

positive rates fp and tp. Li et al [68] and Lienhart et al [69] follow similar strategies, ex-

cept that Li et al also incorporate a cost-based criterion to remove simple classifiers from

cascade phases, and Lienhart et al produce a tree, rather than a linear sequence, of cascade

phases. Meanwhile, Schneiderman [105] trains a single ensemble using AdaBoost but clas-

sifies image locations using a subset of simple classifiers at run time. Antifaces [58] can be

thought of as building a cascade of linear discriminants, each of which are optimized ac-

cording to fixed detection rate criterion. Finally, Amit et al [3] and Rowley [98] each train

two-phase classifier cascades for face detection, and each phase sets thresholds according

to fixed detection rate criteria. It should be noted that misclassification costs can easily

be incorporated into boosting-based cascade phases by replacing AdaBoost with the very

similar AdaCost ensemble trainer [30].

6.2.1 Sparse Image Probing

In this thesis we emphasize object recognition techniques which classify a test pixel by

bottom-up image probing: accessing a sparse set of pixels in the vicinity of the test pixel

and evaluating image features there. Neuroscience researchers have discovered that hu-

mans follow a similar strategy of accessing a series of sparse, isolated image locations

while interpreting a view of a scene. This exploration of the image, referred to as a sac-

cade, is accomplished via fast eye movements which focus the fovea, the high-resolution

center of the retina, on portions of the scene which are the most informative for the visual

task at hand. Image probing aims to achieve an analogous goal; we wish to focus feature

computation on only those pixels which will be the most informative for the classification

of the test pixel.

Several researchers have formulated computer models which account for, or attempt

to mimic, human eye movements during visual cognition [94] [44][33][29]. What dif-

ferentiates them from bottom-up image probing, however, is that they pursue a top-down

interpretation of the scene. For example, in [94], the image is convolved with a bank

of coarse-scale filters, resulting in a feature vector for each coarse location in the image.

These feature vectors are correlated with stored feature vectors for images of target objects,

and visual attention is moved to a local maximum, or local soft maximum, of the resulting

correlation image. The image neighborhood surrounding the new attention point is con-
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volved with a bank of finer-level filters, and attention is again moved to an image location

which represents a maximum or soft maximum of similarity between image feature vectors

and stored feature vectors for target objects. In this way, a coarse-to-fine exploration of im-

age attention points is initiated, until at the finest level the attention lies on the target object

itself. Similarly, in [44][33][29], features are extracted from the entire image, and attention

is shifted to those parts of the image whose features form salient perceptual groups or are

similar to those of target objects at a coarse scale. At those attention points, computation

of features takes place at a finer scale, and attention is shifted again.

In contrast, through bottom-up image probing we scan through each pixel in the test

image and evaluate fine-scale features in the vicinity of each test pixel; in effect, we shift

“attention” to image locations in the neighborhoods surrounding test pixels in order to

classify them. We view top-down saccade algorithms and our bottom-up image probing as

complementary processes; it is possible to imagine a vision system which first follows a

coarse-to-fine strategy to shift attention to interesting portions of the image, and then exe-

cutes a series of image probes at the finest scale to determine which pixels in those image

portions map onto the target object. Faisal et al [29] proposes a neuromimetic system which

pairs a coarse-to-fine attentional mechanism with a fine-scale object recognition module;

however, the recognition module extracts Gabor features from a predetermined, dense grid

of image locations in the attentional area, rather than from isolated, sparse pixels. Giefling

et al [44] propose an object recognition system which first detects salient areas in the im-

age using texture segmentation and interest operators, then accumulates evidence for the

presence of objects in the image by associating salient image areas and spatial relations

between image areas with known objects.

Geman et al present a recognition approach that is very closely related to ours in terms

of sparse image probing [2][3][42]. They induce decision trees which test local feature

values at isolated image locations in order to classify training examples. Each node in the

decision tree only searches for splits among a random subset of the total number of features,

leading to fast tree induction. The key differences between our techniques and theirs are,

first, that their features are usually identified with intensity or texture measures at small

groups of image pixels, and second, that we compute features over growing apertures in a

cascade format.
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6.2.2 Aperture Problems

As mentioned in the previous section, we attempt to classify image pixels by evaluating

local image features at isolated image locations in the neighborhoods of those pixels. Two

obvious questions follow from this formulation. First, how should local image features

evaluated in an image neighborhood be fused together into a final estimate of whether or

not the test pixel projects onto the target object? And second, what should the size and

shape of this neighborhood be? If the neighborhood is too small, the features evaluated

in the neighborhood may be ambiguous; there may simply be too little visual information

inside the neighborhood to reliably determine whether the pixel in question belongs to the

target object or the clutter. On the other hand, if the neighborhood is so large that most of

the pixels in it always project to the clutter, then most of the image features we evaluate

will always be drawn from clutter, making it difficult to disambiguate clutter pixels from

object pixels. Furthermore, classifying test pixels based on evaluating many image features

over large neighborhoods may be computationally prohibitive.

The problem of how to integrate ambiguous local measurements over an extended im-

age neighborhood into reliable estimates of local image properties is a special case of a

widely known problem in computer vision known as the aperture problem. In general

terms, the goal is to estimate a physical property at a set of image sites, i.e. pixels or

patches of pixels, based on local measurements taken at each of those sites. Because the

measurements are local, they are inherently ambiguous; thus, when forming an estimate for

a particular site it becomes necessary to integrate local measurements taken from nearby

sites. The aperture problem, in its most general form, is the problem of how to fuse those

local measurements into site estimates. In our case, the sites are pixels; the ambiguous

local measurements are edge features; and the property to estimate at each pixel is whether

or not that pixel projects onto the target object.

Motion estimation in animals and computer systems gives rise to the version of the

aperture problem most commonly addressed in the neuroscience and computer vision lit-

eratures. Given a video sequence of two or more images, the property to estimate at each

pixel of the images is a motion vector that aligns the pixel to its corresponding pixel in

the next frame. See, for example, [120] and [86] for discussions of motion aperture prob-

lems in biological vision systems and [4] for a discussion of how aperture problems can

cause errors in artificial motion estimators. A related aperture problem arises in the prob-

lem of finding point correspondences between images in a stereo pair. Correspondences

are found by measuring similarity between patches surrounding putative point matches in

142



the images, and the aperture problem consists of determining a patch size which resolves

ambiguity without introducing too much computation or confusion.

Several solutions have been presented to these aperture problems. Neural network ar-

chitectures were trained using supervised or unsupervised learning criteria to integrate mo-

tion estimates over a pre-determined neighborhood of nodes [107][108]. Veksler [115]

proposed an algorithm which automatically determines the sizes and shapes of correspond-

ing image patches in the two images, thus solving the aperture problem by integrating

pixel-to-pixel similarities over image patches that maximally agree with each other. Ear-

lier, similar approaches to the stereo problem grew and shrunk the patch sizes incrementally

[57]. Freeman et al [39] produce local motion measurements at each image site, an inte-

grate measurements from neighboring sites together using an iterative algorithm [39]. At

each iteration, neighboring sites modify their motion estimates based on the motion esti-

mates of neighboring sites, which are themselves being modified at each iteration. Thus, by

the kth iteration, the motion estimate at a particular image site has integrated the estimates

from all image sites k or fewer steps away.

The solution we take to our classification aperture problem is motivated by procedures

such as Freeman’s which iteratively integrate measurements over larger and larger neigh-

borhoods in order to make reliable local estimates. In particular, we embed this intuition

into a cascade-of-classifiers paradigm; each successive classifier in the cascade is trained

to evaluate image features over successively larger neighborhoods in order to classify the

pixel in question. If the image features in a particular image neighborhood are sufficient

to determine with high certainty that a particular pixel projects to the background, com-

putation stops and the pixel is classified as clutter. If, however, the image features do not

identify the pixel as clutter, the neighborhood is grown and image features are evaluated

over the larger neighborhood. In this way, the neighborhood is iteratively grown until the

pixel is determined to be clutter or until it is determined to belong to the object by the final

classifier in the series.

6.3 Future Work

In this section we present some directions for future research. The key issues which should

be addressed are the simplified object representations employed by the part classification

and aggregation steps, as well as the challenges presented by large numbers of features and

images.
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6.3.1 Spatial Representations of Object Parts

Our method for part classification based on edge cues consists of representing all pix-

els from the object as belonging to a particular “object” category, and all pixels from the

background as belonging to a “background” category. The object category encompasses

the appearances of all sections of the object at all poses, and therefore the image features

drawn from this category can be be highly varied. Implicitly, when we try to discriminate

object pixels from background pixels, we are forced to overcome this complexity. In the

experiments we show, we are largely successful at discriminating object from background

even though we place object pixels from entirely different parts of the object into the same

category, but it is possible that with very complex-shaped objects, the distribution of image

features may be so complex that it will be impossible for classifiers to extract meaningful

regularities in the features which discriminate them from features drawn from clutter.

Ideally, instead of compressing all object parts into one omnipresent category, we would

like to represent objects as collections of distinct parts, and model the distributions of image

features corresponding to distinct parts discriminatively. This is the approach taken in

Chapter 7; objects are represented as a set of categories corresponding to the appearances

of distinct physical parts, and the goal is to determine which portions of the image feature

space correspond to which parts. For recognition of the ladder, for example, instead of

discriminating between object and background pixels, we could formulate the problem in

terms of discriminating between image features corresponding to the legs, steps, other parts

of the ladder, and background. Thinking of objects as collections of distinct parts allows

more sophisticated aggregation schemes than the ones we present in Sections 3.5.5 and

4.2; for example, after the part classifier labels pixels as belonging to the legs and steps

of the ladder, the aggregation step can constrain these labeled parts so that they appear in

plausible arrangements with respect to each other (as in [34] for example). Unfortunately,

this implies richly labeled training data; the legs, steps, and so on would need to be labeled

in each training image, and in our examples our ladder images are only labeled with which

pixels belong to any part of the ladder, and which do not. Labeling each training image in

this way can be tedious, as we mention in Section 7.5.

Our shape-based recognition technique collapses all physical parts of the object into

one category, giving rise to highly complex feature distributions; on the other hand, our

texture-based technique represents all parts of the object as individual categories, giving

rise to a labor-intensive data labeling task. A compromise between these two approaches

is to represent objects in terms of multiple categories, each of which do not necessarily
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(a) Object With Sub-boxes (b) Probe centers for sub-boxes

Figure 6.1: A proposal for representing objects in terms of the appearances of parts appearing in sub-boxes. Figure 6.1(a): Instead
of representing the object in terms of a single category of pixels, we represent each sub-bounding-box as its own category and train
classifiers to discriminate between pixels lying in distinct sub-boxes. Figure 6.1(b): We can use spatial information to compute edge
probes at probe centers that are more likely to lie on the object rather than the background. That is, for pixels lying in the upper right
sub-box, probe centers below and to the left are more likely to lie on the object.

correspond to individual physical parts. Specifically, consider drawing a bounding box

around the object of interest and partitioning the box into sub-boxes (Figure 6.1(a). We

can allow each of the sub-boxes to correspond to a distinct category, so that at training

time we attempt to discriminate between image features corresponding to pixels in distinct

sub-boxes, and background. This converts our binary object-vs.-background classification

task into a a multi-class discrimination problem, for which we must employ some sort of

multi-class discriminant, for example [48] [123].

This approach has potential advantages. First, the sub-boxes do not correspond to phys-

ical object parts– for example, as the ladder rotates, object parts will appear in different

sub-boxes– but characterizing pixels as belonging to particular sub-boxes has the poten-

tial to enable aggregation mechanisms which can incorporate constraints on the spatial

arrangements of pixels classified as belonging to particular sub-boxes. A pixel classified as

belonging to a sub-box in the lower lefthand portion of the object bounding box is expected

to be surrounded by other pixels in the same or adjacent sub-boxes for example. Also, we

can use this representation to fine-tune our image features so that we compute image fea-

tures more likely to lie on the target object. An example is shown in Figure 6.1(b): since

the point marked “+” is known to lie in the upper righthand sub-box, it makes sense to only

compute edge probes at probe centers below and to the left, since these probe centers are

more likely to lie on the image of the target object. Finally, while using sub-boxes boosts

our descriptiveness of object parts, they do not imply any additional labeling tedium, since

the sub-boxes are automatically computed from the object bounding box. Future work

145



should address the usefulness of this representation.

6.3.2 Spatial Aggregation

Our part classifiers are not the only step in our bottom-up localization process that pays

no attention to how parts are spatially arranged in the image. The aggregation steps pre-

sented in Sections 3.5.5 and 4.2 sum up the number of points in a bounding box, or the

sum of scores in a bounding box, without representing how the points or the scores are dis-

tributed spatially within the box. This leads to a variety of errors. For example, in Figure

5.14(c), most of the false positive pixels in the image have been discarded, and the only

ones remaining cover a roughly object-sized block that is still “on.” The aggregation scores

(Figure 5.14(e)) indicate high scores for bounding boxes which only cover a percentage of

the “on” area because it has no notion that large contiguous sections of zero-scoring pix-

els indicate that the object is not likely to be present. A straightforward improvement to

our aggregation step, which should be explored in future work, consists of considering the

aggregation filter as a mask M which we correlate with the pixel classifier scores:

ag(bθθθ, q, W ) =
∑

x∈[
−bθθθw

2
,
bθθθw
2

]

∑

y∈[
−bθθθh

2
,
bθθθh
2

]

W [q[x] + x, q[y] + y] ∗ M [x, y]

The values in the mask can be estimated from pixel classification scores on training

data. In future work, aggregation steps like this which take account for spatial distributions

of parts should be investigated.

6.3.3 Large Data Set Problems

One of the main drawbacks of our classifier cascade is that it is extremely computation-

intensive. As we report in Chapter 3, it can take a day or more to produce a 20-phase

cascade, and in none of our examples is the number of training images very large: from

roughly 100 for the ladder experiments to 200-350 for the stool experiments. To broaden

the applicability of our technique to large collections of training images covering wide

variations in variables like pose, future work should produce computational speedups which

address the bottlenecks caused by large volumes of training data.

For example, when training classifiers, we randomly sample a large set of pixels from

each image even though many of the pixels will be redundant with respect to image features.
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When employing edge operator probes (Section 4.1), we train classifiers based on pixels

drawn from all over the image, even though most of the pixels in edge-less portions of the

image will have near identical (i.e. zero) responses to all of the edge operators. Quickly

removing redundant training examples will be key in applying our technique to larger data

sets.

Decision tree induction also has the potential for significant speedups. In particular, at

each node in the decision tree we search for good split values in each attribute brute force,

by considering each training example in turn and computing a “goodness-of-split” criterion

for a split just before or just after the value for that example. Obviously the complexity of

brute-force search for split values grows linearly with the number of training examples,

so in the future we should employ smarter techniques for searching for good splits, for

example by hierarchically clustering the attribute values and evaluating splits between the

clusters. Also, we can speed the process of building trees from a large number of fea-

tures by incorporating randomization techniques as in [2]. That is, rather than exhaustively

searching through the set of all features for a good split at each node, we select a random

subset of features and search for good splits amongst them.

6.3.4 Automatic Selection of Probe Centers

One weakness in our approach is that the layout of relative probe centers is chosen by

hand. In particular, our policy of spacing the relative probe centers in rings spaced σ apart

is somewhat arbitrary. While this particular spacing of spatial features works well in our

experiments, it is unclear a priori that this set of image features contains sufficient infor-

mation for discriminating object pixels from background pixels. On the other hand, it is

possible that our layout of relative spatial features is overly dense; in other words, we may

be able to perform our discrimination task with features more sparsely spread out over the

aperture. Since the number of image features grows with the aperture size (See Table 3.5 for

example), it is especially desirable for the relative probe centers to be as sparse as possible

for computational efficiency, while containing a sufficient amount of features to discrimi-

nate reliably. Therefore, the impact of the layout of relative probe centers on localization

performance should be addressed in future work.

In particular, one avenue for future research is the automatic selection of probe centers.

Recall that in Section 4.1.1, we train a decision stump for each operator-offset pair (gθθθ, δδδ)

and assign a score n(gθθθ, δδδ) based on how well the decision stump discriminates object pixels

from background pixels. Operator-offset pairs with high scores are considered favorable
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Figure 6.2: Proposal for automatic selection of relative probe centers. We start with an initial grid of relative probe centers (marked
“x”), and a function m(x)y which measures how well edge probes evaluated at spatial offset (x, y) discriminate between object and
background pixels. Points with low To find a discrimination-optimal set of relative probe centers, we could move the initial set of centers
so that they maximize m, for example by gradient ascent. Probe centers in the vicinity of the same mode (for example, the ones with
arrows attached) would converge to the same spatial offset.

for training full decision trees because they do a good job of discriminating on their own.

Consider a function m(δδδ) =
∑

θθθ n(gθθθ, δδδ) which summarizes the discriminability scores

for all the operator-offset pairs at a relative probe center located at offset δδδ with respect to

the query point. Prior to training any classifiers, we can use m to drive the design of the

set of relative probe centers we train the classifiers with; namely, we can use optimization

procedures to find a set of relative probe centers {δδδ} such that m(δδδ) is high for all of them.

Figure 6.2 illustrates how m can be used to induce an efficient, informative set of rela-

tive probe centers. Starting with an initial set of relative probe centers {δδδ} (marked “X”),

we use gradient ascent to move each δδδ toward the modes of m; in other words we iteratively

move each δδδ in the direction [ ∂m
∂x

, ∂m
∂y

]. Relative probe centers near the same mode (for in-

stance, the ones with arrows attached in Figure 6.2) converge to the same spatial location

and all but one of them can be removed from the set of probe centers.

This approach has the potential to be computationally difficult however. The decision

stump criterion m is discontinuous with respect to the location of δδδ. In particular, a small

change in δδδ may cause an entirely different “best split” threshold and therefore an entirely

different discrimination criterion for that split. Thus, in order to do gradient ascent, an

approximation of or replacement for m is needed such that the derivatives ∂m
∂x

and ∂m
∂y

are everywhere well defined, and efficient to compute. Otherwise, it is possible to apply

stochastic optimization procedures to find a discrimination-optimal set of image features,

as in [70]. Future work should address these issues.
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Figure 6.3: An illustration of the fact that edge probes are recomputed on the remaining edge pixels after each cascade phase. The input
edge image is shown in the upper left; edge probes evaluated over the whole edge image before cascade phases 2,5,8,11, and 15 are
shown left-to-right, top-to-bottom.

6.3.5 Feature Recomputation

One unique characteristic of the training and run-time procedures in Algorithms 2 and 3

is that image features are recomputed after each cascade phase, based on the edge pixels

remaining under consideration. That is, during each cascade phase, for each pixel q which

has not been discarded, we compute edge probes ep(q + δδδ,G) which measure local edge

densities among the set of all pixels G which have not been discarded. As pixels are dis-

carded from the image, local edge densities drop, meaning that ep(q + δδδ,G) may take on

different values at each cascade phase. An example of this fact is shown in Figure 6.3: edge

probes at all locations in the image are computed at different cascade phases.

Thus, unlike other recent cascade approaches to recognition [118][68][58], our set of

image features is non-stationary; the same image features take on different values at differ-

ent cascade phases. An alternative is to compute edge probes on the full set of edges and

use those feature values during each cascade phase; doing so would save the computation

required to recompute features at each phase. Initial, anecdotal experiments suggest that

re-computing edge probes causes a significant boost in discrimination performance, but

future work should address when, and why, this is the case.
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Chapter 7

Discriminative Image Filtering

In this chapter we focus on image features for bottom-up localization based on texture cues.

Recall that in our formulation, the first step of bottom-up localization consists of projecting

image patches onto a low-dimensional feature space using a feature mapping function f().

Here, we present an approach for arriving at f() in such a way that the image features

corresponding to distinct object parts and clutter have disparate values. In particular, we

convolve the image patches with a set of filters and linearly combine the filter outputs in

such a way that the outputs are discriminated for distinct parts.

7.1 Introduction

In many texture-based approaches to recognition, image patches are represented by their

responses to one or more filters. A common paradigm is to first gather up example image

patches containing object parts and run them through a bank of filters; the filters can then be

applied to a novel image and their responses compared to those for the training views to ac-

complish part classification. Filter sets appropriated for this purpose include convolutional

kernels like Gabor wavelets [10] [81][102] and Gaussian derivatives[102][10][93], differ-

ential invariants based on combining the outputs of those kernels [103], local eigenspaces/PCA

[22][56][84], and color statistics[110]. Each contains distinct characteristics that make

them advantageous; for example, Gabor kernels are well-localized in space and frequency,

invariants can tolerate transformations of the image, and local eigenspaces minimize recon-

struction error of the training views.

But none of these filters are designed from the beginning with part classification in
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(a)

(b)

Figure 7.1: Figure 7.1(a): Example images with object parts labelled. Figure 7.1(b): Detection of a subset of the parts from Figure 7.1(a)
and clutter (marked “C”) in a novel image. For display purposes, we only searched for six of the 11 labelled parts on this side of the mug.
The number of rectangles around each patch is proportional to the confidence in its classification. Note that the window on the upper
left portion of the mug is not mislabelled as clutter; since none of the parts of interest are on that portion of the object, it is technically
“clutter” for parts classification purposes. Results for classification of the complete set of mug parts using the approach described in this
paper are presented in Section 7.4.
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mind. Those relying on pre-defined banks of kernels or statistics are not necessarily tuned

to the appearances of specific objects and environments, so if the design parameters of the

kernels are not properly set, it is possible that filter responses from distinct object parts

will be indistinguishable from each other, or that outputs for background clutter will be the

same as those for the object to be searched for. Local eigenspaces, although derived directly

from training views, are not necessarily tuned for discriminability either– they maximize

the pooled covariance of all example patches of all object parts, but do not necessarily

encourage discriminability between the different parts and background. As a result, imple-

mentations rely on two types of optimizations: tuning the design parameters of the filters so

that outputs for distinct parts are distinct, and adjusting the settings of the part classifier that

decides which filter outputs at run-time correspond to which parts of object. For example,

suppose we want to recognize objects by using image responses to a set of Gaussian deriva-

tives to tally votes for object parts in a hash table, as in [93]. For some recognition scenarios

it may be unclear how to determine what Gaussian standard deviation (later referred to as

the “width” or “scale” of the kernel) will result in responses that are well-clustered for the

same part and well-separated for different parts; it may also be difficult to determine how

to size the bins in the hash table to minimize incorrect votes.

There are two common solutions to this problem. First is to discretize the range of rea-

sonable filter parameter settings, run recognition experiments using each setting in turn, and

select the setting which gives the best performance. Second is to generate filter responses

over many parameter values for the same image patch at training time and/or run time. As

an example of the second approach, Schiele et al [102] gather responses of training patches

to Gaussian derivatives or Gabor kernels at several scales off-line and compare these to the

outputs for a single scale on a new image. Local eigenspace techniques, on the other hand,

tend to take the first approach, generating filter responses for a single parameter setting for

training and testing[22][56][84].

We show experimentally that by optimizing linear combinations of filter sets over a

range of filter parameters we can achieve good part classification without requiring a suite

of trial-and-error experiments or training a part classifier with multiple distinct sets of re-

sponses per patch. Furthermore, we demonstrate that in some cases, the resulting filters

can enhance classification to a degree that enables simpler classification mechanisms at

run-time. We emphasize that we do not propose a new functional form for image filters;

rather, we introduce a way to use training data to automatically combine sets of filters of

any type so that the image feature mapping enhances part classification.
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We call the resulting image features discriminant filters because the combining coeffi-

cients are optimized to discriminate between responses for distinct object parts and clutter.

As an example, to design the Gaussian derivative kernels mentioned earlier we would syn-

thesize many filter sets, one for each choice of Gaussian width over a range of plausible

values. We then compute the responses of the training patches to each of the filter sets, and

determine what the coefficients of a linear combination of those filter sets should be so that

the responses for different object parts are discriminated from each other, while responses

for the same part are tightly clustered. The discriminant filter in this case is the result of

combining the Gaussian derivatives using those coefficients.

A survey of related approaches to texture-based image feature design is in Section 2,

followed by the formulation of discriminant filters in Section 3. Part classification experi-

ments which apply discriminant filters to three previously reported filter types are described

in Section 4 and discussed in Section 5.

7.2 Previous Work

Our goal is to derive a feature mapping f which maps image patches P to a low-dimensional

space. We will assume that the dimension m of the image feature space is selected ahead

of time, and that the size of the image patches is fixed at k. We will also assume that we

have access to training data, specifically example sets {(Pl, l)} of image patches Pl corre-

sponding to object parts l. Our approach to bottom-up localization begins by computing

f(P ) for a given patch, and classifying the image feature f(P ) using a part classifier. In

this section we review previous designs for the feature mapping and part classifier.

Several authors, including [22], [84], [104], and [56] propose the use of principal com-

ponents analysis to model the local appearances of parts, much the way earlier researchers

[80] [82] modeled global appearances. An eigenspace decomposition is computed for the

set of all training patches (or Fourier transforms of them as in [56]), and at run time, image

feature mapping consists of projecting novel image windows onto the first several signifi-

cant eigenvectors. Since projecting patches into the eigenspace is a dot-product operation,

the significant eigenvectors can equivalently be thought of as eigen-”filters” that are cor-

related with the test image patches. Local eigenspaces can be a good way to model the

appearances of parts in a low-dimensional subspace since the first m principal compo-

nents represent the best m-dimensional fit of all patches in an SSD sense; however for our

application we are more interested in discriminating between sets of image patches than re-
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constructing them. In particular, while eigenspace techniques maximize the covariance of

filter outputs over all classes of image patches, they do not necessarily encourage partitions

between them. As a result, it is necessary to tune parameters of the PCA decomposition–

namely, the image patch size and number of significant eigenvectors– to ensure that eigen-

filter responses for different object parts and for clutter are not confused. Reasonable set-

tings depend on the scale of visual texture on the object and viewing conditions such as

levels of occlusion, noise, clutter, and lighting.

A more prevalent approach to filter design is to construct banks of convolutional ker-

nels based on criteria that do not depend on individual instances of training data. Gabor

wavelets are an especially popular kernel choice [10] [81][102] since they are localized in

frequency and space; it is easy to synthesize a set of Gabor kernels that regularly blankets

spatial and frequency domains. Gaussian derivatives are also widely used [102][10][93]

due in part to the fact that responses to them are equivariant to scale [102]; they have the

added advantage that filter outputs for certain transformations of the image patches can

be determined automatically by steering[38]. While these kernels form a mathematically

sound way to represent the image signal present in the patches, responses from them are

not necessarily sufficient for discrimination; in practice we will need to adjust the Gaussian

widths of these filters, and the frequencies of Gabor kernels, to ensure that the information

extracted from views of different object parts and clutter can be disambiguated from each

other.

Invariants based on kernel responses are helpful since the outputs for the same object

parts will not vary at all when the image of the part undergoes certain transformations; for

example the differential invariants in “jet” space computed by Schmid et al [103] will not

change if the image of the part undergoes a rigid displacement. Still, there is no guarantee

that for a particular set of kernel parameters these invariants will be distinguishable for

different parts. Again, to ensure discriminability, the settings of the kernel bank must be

tuned.

Other image filters, for example those based on local contour invariants [106], color

invariants[110], and Laplacian zero-crossing images [63] could suffer the same limitation–

the parameters for these transformations may need fine-tuning to reduce confusion between

outputs for distinct parts.

An expressive part classification mechanism may accommodate image filters whose

outputs are not necessarily tuned for discrimination. Mohan, for example[81], gets good

part classification results using Gabor kernel responses classified by a set of support vector
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machines with nonlinear Mercer kernels, while Nelson et al [106] achieve high perfor-

mance using contour invariants and a hash table. The drawback is that the part classifiers

are governed by their own sets of parameters that must be tuned. In particular, the choice

of Mercer kernel and penalty terms for SVMs affect false positive and false negative rates

while bin size and policy for handing out votes are critical for indexing schemes to perform

well. There is evidence that hashing schemes in particular are especially sensitive to param-

eter settings [47]. Worse, the effect of filter design and classifier design on performance is

coupled– a change in the number of eigenvectors in PCA, for instance, may alter the design

of k-nearest-neighbor distance functions which analyze the filter responses. Our results

suggest that in some cases discriminant filter responses can cluster well enough that simple

classifiers can perform well– for example, we see acceptable part classification results by

fitting Gaussian distributions to outputs.

While discrimination-centered techniques have not been applied to image feature de-

sign in bottom-up recognition, they have appeared in single-step and top-down approaches,

as well as in other domains such as texture discrimination. These related techniques are

discussed in Section 2.1. Our approach is related to the Fisherfaces method[7], in which

images of an entire object (faces in this case) are projected into a low-dimensional space

using PCA, and a second linear transformation is determined by optimizing a Fisher ratio

to encourage disparate outputs for different objects and similar outputs for the same ob-

ject. Our approach differs in that we take many image transformations and combine their

outputs, while Fisherfaces incorporate one eigenspace decomposition.

7.3 Approach

For notational simplicity we illustrate the approach for the case of discriminating between

two parts with sets of example image patches C1 and C2. Our goal is to derive a feature

mapping f which maximizes the following criterion:

R =

1
|C1||C2|

∑

P1∈C1,P2∈C2
‖f(P1) − f(P2)‖

2

∑

Cp∈{C1,C2}

(

|Cp|
2

)
∑

P1,P2∈Cp
‖f(P1) − f(P2)‖

2
(7.1)

The numerator summarizes the distances between projected patches in C1 and projected

patches in C2 and is analogous to the between-class scatter of Fisher discriminants[25].

The denominator summarizes the distances between projected patches in the same set and

is analogous to within-class scatter. We assume that two sets whose patches are well-
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separated from each other will be the easiest to discriminate, so we seek a f which max-

imizes the numerator; at the same time, we assume that well-clustered sets of features

require simpler representations for discrimination so we want f to minimize the denomi-

nator.

We express f as a linear combination of m-dimensional basis functions f � :

f(x) =
∑

j

αj · φ� (x), φ� (x) =













φ1j(x)

φ2j(x)
...

φmj(x)













This representation is not a restriction; we can represent arbitrarily complex functions f

provided that we have a sufficient number of unique basis functions. Each φ � represents

one set of filters for a particular parameter setting; returning to the Gabor kernel example,

each φ� could correspond to a different choice of envelope width, with each φij being a

Gabor kernel with that width and some choice of orientation and frequency. Given a set of

n basis functions φ � for n different parameter settings, we seek to find the set of coefficients

α = [α1, α2, · · · , αn]
T which maximizes R. Substituting

∑

j αj · φ� (x) for f in (7.1)

and rearranging terms, we see that the numerator is equal to

1

|C1||C2|

∑

j

∑

k

αjαkA1jk − 2 ·
∑

j

∑

k

αjαkB12jk

+
∑

j

∑

k

αjαkA2jk

and the denominator is
(

|C1|

2

)

(2 ·
∑

j

∑

k

αjαkA1jk − 2 ·
∑

j

∑

k

αjαkB11jk)

+

(

|C2|

2

)

(2 ·
∑

j

∑

k

αjαkA2jk − 2 ·
∑

j

∑

k

αjαkB22jk)

where

Apjk =

m
∑

i=1

∑

P1∈Cp

φij(P1)φik(P1)

157



and

Bpqjk =

m
∑

i=1

∑

P1∈Cp,P2∈Cq

φij(P1)φik(P2)

The ratio may be expressed equivalently as

R =
α T Nα

α T Dα
(7.2)

where N and D are n-by-n matrices such that

N(j, k) =
1

|C1||C2|
(A1jk − 2B12jk + A2jk)

and

D(j, k) =

(

|C1|

2

)

(2A1jk − 2B11jk)

+

(

|C2|

2

)

(2A2jk − 2B22jk)

The α which maximizes (7.2) is the eigenvector corresponding to the maximum general-

ized eigenvalue of N and D. Note that the coefficients Apjk and Bpqjk which comprise N

and D are readily computed by evaluating the basis functions φ � (x) over all elements of

both sets C1 and C2 and taking various dot products and sums. The generalized eigenvalues

of N and D may then be recovered using well-established numerical techniques.

This formulation is not restricted to two-part discrimination. In the general case, the

within-class distances in the denominator will be summed over all sets and the across-class

distances in the numerator will be summed over all pairs of sets, thus

N(j, k) =
∑

Cp 6=Cq

1

|Cp||Cq|
(Apjk − 2Bpqjk + Aqjk)

and

D(j, k) =
∑

Cp

(

|Cp|

2

)

2Apjk − 2Bppjk

To summarize, our problem of combining basis functions to maximize distances across sets

of image patches while minimizing distances within the sets reduces to evaluating the basis

filters on the patches in the sets and finding generalized eigenvalues. As a concrete example,

suppose we would like to use a vector of differential invariants based on derivatives of a

Gaussian (as in [103]) for image features, but it is unclear how to choose one or more
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Figure 7.2: A sample of cluttered scenes containing the mug.

Gaussian widths for the filters. We let each φ� correspond to one such vector of invariants

for a particular choice of σ; by varying σ discretely over a range we arrive at a set of φ�

functions which are combined using the derived coefficients α.

7.4 Experiments

We collected images of a common object (Figure 7.2) in varying poses and labeled the

locations of selected object parts as in Figure 7.1(a). For each recognition experiment,

we selected standard image filters from the literature and instantiated basis functions φ �

corresponding to a range of parameter settings for it. Given a subset of the labeled images

as training data, we used the basis functions to derive discriminant filter coefficients as in

Section 7.3, and used the remaining images for evaluation. To place the experiments in the

context of previously reported end-to-end algorithms, we trained a nearest-neighbor part

classifier as in [10][103][56][21][82][84][7]. For comparison, we also estimated Gaussian

distributions for part classification as well. This section describes the data and experiments

in detail.

7.4.1 Data

We took 60 images of a coffee mug with a hand-held camera. Of these photos, 12 featured

the mug against a flat gray background and in the rest it was surrounded by a selection of
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clutter objects (Figure 7.2). For each of these shots, the camera was at roughly the same

distance and elevation from the object, but there were still slight variations in object scale

and in all components of rotation since the camera positions were not carefully controlled.

The clutter objects maintained the same spatial arrangement with respect to each other in

12 of the pictures; for the other 36 we moved the pieces around between frames. We labeled

18 parts on the mug in every view (Figure 7.1(a)). Each of them appeared in at least 20

images.

7.4.2 Experimental Procedure

For each filter basis and classifier, we ran trials consisting of the following steps:

• Data Collection

1. For each part, randomly select 20 views of it and partition them so that 75%

(15 views) are used for training, and testing is done on the remaining 25% (5

views).

2. Select 100 image patches of clutter at random and partition these 75-25 into

train and test sets.

• Training

1. Solve the eigenvalue problem for discriminant filter coefficients over the parts

and clutter training sets, treating the clutter as though it were another object

“part.”

2. Store the discriminant filter responses for the training views and train a classifier

based on them.

3. Store the filter outputs for each φ� on training patches and train a separate part

classifier for the responses to each φ� .

4. Gather up all responses to each separate φ� and train one classifier using all of

them together as example data.

• Testing

1. Run test set patches through each of the φ � filters, compute the discriminant

filters response from them, and process the results through each of the classi-

fiers. In the case of the “all-φ� s-at-once” classifier, we follow a strategy found
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in earlier approaches[103][102]: pick one φ� and compute responses for it at

run time.

We ran 25 trials of this sort for each classifier and filter basis. Specific characteristics

of our classifiers are described next.

7.4.3 Classifiers

We represent our set of Nc part classifiers for Nc object parts as functions {c1, c2, · · · cNc}.

To train, we optimize these functions so that cl is high for images of part l. At run time we

gather up all scores {c1(P ), c2(P ), · · · cNc(P )} for all test image patches P and count how

many correct class scores are above a certain threshold versus how many incorrect scores

are above the same threshold. In other words, this assessment is somewhat “pessimistic”

as one test example can account for many false alarms.

For k-nearest-neighbors, we compute the image feature f(()P ) for each test image

patch P and find the k training image patches {Pl1 · · ·Plk} from each class l whose image

features {f(Pl1) · · · f(Plk)} are closest to f(P ). The class score cP (l) for P belonging to

class l is then

cP (l) =
∑

k

exp(−C ∗ ‖f(Plk) − f(P )‖2)

We estimate the parameter C for each class by brute force at training time; for each

Pl in class l, we compute cPl
(l) − maxl2 6=l(cPl

(l2)) for 50 different settings of C ranging

from 10−6 to 106. In the end we pick the C for which the median of these values is high-

est. We emphasize that while this optimization is time-consuming, it is exactly the sort of

optimization that in some cases a nearest-neighbor classifier may require to ensure good

performance; there are no theoretical reasons for the exponential in cl to take on one value

or another. In all experiments we set k to 5.

To compare performance with a less-flexible, more-easily-trained part classifier, we ran

trials in which we fit a Gaussian distribution to training image features. In other words, the

classifier for each part l is a Gaussian function:

cP (l) = (1/(2π)d/2‖Σ‖d)exp((−1/2)(f(P ) − µ)T Σ−1(f(P ) − µ))

and at training time we use filter responses to estimate the mean µ and covariance Σ.
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Figure 7.3: Image patch modulated by a range of Gaussian envelopes. For each Gaussian, a PCA decomposition is computed on the set
of all training patches modulated by that Gaussian.

Since the covariance matrices Σ are estimated using a small number of examples relative to

the dimension of the filters, we restrict Σ to be diagonal as in covariance selection methods

[49].

7.4.4 Local Eigenfilters

The first set of experiments employs local eigenspaces for the image features. As in [22]

[84][56], we want to collect all training patches for the various object parts and perform

principal components analysis on them, but we would also like to automatically determine

how to incorporate multiple patch sizes into our features. To apply discriminant filters to

this problem, we simulate smaller effective window sizes by multiplying the patches by a

Gaussian envelope. Depending on the standard deviation of this Gaussian, more or less of

the periphery of the patch is set close to zero (Figure 7.3). We perform PCA on the set of

Gaussian-modulated image patches at training time; at run time, a test patch is multiplied

by the same Gaussian and projected onto the first few significant eigenvectors.

We assign each φ� (x) to a different width of Gaussian envelope, so that each φ � (x)

corresponds to PCA on a different effective window size. More formally, let nσ denote

a Gaussian with zero mean and standard deviation σ, and let the set of all image patches

be {p1, p2, · · ·}. If we write {vσ1, · · · , vσn} for the first n principal components of {nσ ◦

p1, nσ ◦ p2, · · ·}, then we set φij(P ) = vσj i · nσj
◦ P . There are 10 different φ� filters,

ranging from σ = .25 to σ = 2.5. Each has 10 principal components, resulting in a 10x10

basis.

Results using the Gaussian classifier for discriminant filters are plotted solid on Fig-

ure 7.4; results where responses are extracted using individual φ � filters are shown dotted.

Figure 7.5 shows the same plot for the nearest-neighbor classifier. Comparing plots on

Figure 7.5 to each other, we see that discriminant filters with a k-nearest neighbor clas-

sifier can be competitive with previous local eigenspace techniques which use k-nearest-

neighbors, with the advantage that multiple window sizes were incorporated automatically.
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Figure 7.4: ROC curves using local eigenspace image features and a Gaussian part classifier. Solid curves on the left and right show
performance of discriminant filters using eigenfilters as a basis. On the left, one dotted curve is plotted for each particular patch size. On
the right, features for all patch sizes are combined at training time, and features for the median patch size are used at run time. Details in
the text.
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Figure 7.5: ROC curves using local eigenspace features and a k-nearest-neighbor classifier, as in Figure 7.4. Details in the text.
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Figure 7.6: Examples of filters from the Gabor basis, varying by width of Gaussian envelope, frequency, and orientation.

Comparing Figure 7.5 to Figure 7.4 suggests that the use of a Gaussian classifier does not

degrade performance, even though its parameters are much easier to estimate than those of

k-nearest-neighbors. Furthermore, discriminant filters performance is almost identical to

that of classifiers trained on all patches of multiple sizes.

7.4.5 Gabor Filters

Next we consider banks of Gabor filters, used in a number of recognition methods[81][10][102].

Gabor filters are sinusoids modulated by a Gaussian envelope; as above, we would like to

use discriminant filters to determine what frequencies and Gaussian widths lend themselves

to effective parts classification.

For these experiments, each φ� consisted of a set of 4 Gabor filters oriented at even

intervals between 0 and π radians. The 25 different φ � s correspond to each possible com-

bination of 5 frequencies ranging evenly from .2 to .5 and 5 Gaussian widths varying from

.1 to .75(Figure 7.6). All filters have a 1:1 aspect ratio. As above, we used discriminant

filters to derive 4-dimensional image features over the 4x25 basis, and trained Gaussian and

k-nearest-neighbor classifiers to discriminate them for the 18 object parts and clutter. Re-

sults are shown in Figure 7.7 and Figure 7.8 (left). While discriminant filters do not perform

as well as the best single filter set with a Gaussian classifier, the performance is comparable,

and discriminant filters achieve better part classification than storing responses at multiple

scales at training time. As in the previous section, the key point is that we were able to

compute the discriminant filters directly, rather than running recognition experiments for

each parameter setting in turn.

7.4.6 Differential Invariants

The next set of experiments is applied to differential invariants in “jet” space [103]. To

compute an nth-order differential invariant for an image patch, we convolve it with all
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Figure 7.7: Part classification ROC curves using Gabor filters and a Gaussian classifier, displayed as in Figure 7.4. Details in the text.
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Figure 7.8: Left: ROC curves using Gabor filters and a nearest-neighbor classifier. The solid curve plots performance using discriminant
filters; the dotted curve trains on all filter responses for all φj . Right: ROC curves using differential invariants and nearest-neighbor
classifier, displayed as the graph on the left.

Figure 7.9: A filter basis is constructed using differential invariants computed from derivatives of Gaussians over a range of Gaussian
variances. Shown is ∂a/∂x∂y over that range of variances.
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Figure 7.10: ROC curves using local differential invariant features and a Gaussian classifier. Solid curves show performance of discrim-
inant filters using differential invariants of varying width as a basis. Left: One Dotted curve is plotted for each width setting. Right:
Features for all widths are combined at training time, and features for the median width are used at run time. Details in the text.

Gaussian derivatives up to order n and construct invariants by multiplying and adding the

results together. As in [103], our experiments focus on the use of 3rd-order differential

invariants under the rigid displacement group; there are 9 such unique invariants, so each

φ� will be 9-dimensional.

These invariants are computed using derivatives of a single Gaussian, so we immedi-

ately arrive at the problem of determining what its standard deviation should be. In [103],

Schmid et al compute the invariants over a range of discrete scales at training time and at

a single scale at run time; here, we apply discriminant filters to the problem of selecting σ

so that each patch is represented by a single vector of outputs during training. To do so,

we select a set of values of σ and assign each φ� to compute the differential invariants for

a particular σ. We picked 10 values of σ ranging from .15 to .5, giving us a 10x9 filter

basis (Figure 7.9). As above, we performed 25 trials using discriminant filters and 25 trials

each for the individual settings of σ, using a Gaussian classifier. Figure 7.10 shows that in

this case discriminant filters perform as well as the best setting of σ. Training a nearest-

neighbor part classifier using all invariants computed for all scales, and at run time using

the invariants for the median scale, gives results that are comparable to those for discrimi-

nant filters (Figure 7.8,right). They are also comparable to those for the Gaussian classifier,

suggesting again that it is possible to achieve acceptable part classification by combining

invariants at different widths automatically, without training a classifier on responses for all

possible widths separately.
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7.5 Future Work

In this section we address some of the computational and representational limitations of

discriminant filters which should be addressed to broaden their applicability.

We present discriminant filters as a mechanism for optimizing image features based on

labeled training image patches. Unfortunately, labeling the locations of a set of individual

object parts in each image is time-consuming and tedious, especially if the number of object

parts is high. Moreover, through hand-labeling object parts at training time, we assume

that we have chosen a set of object parts that are salient for recognition. It could be the

case that selecting which object parts are the most easily discriminable from each other

and from the background depends on the choice of image features; by forcing the user to

determine which object parts are salient a priori, we allow the user to design flaws into the

recognition system. Future work should concentrate on automatic methods for determining

which object parts are salient for recognition, and extracting those parts from images in

which the spatial extent of the entire object is the sole piece of label information.

Our experiments show that in some cases, discriminant filters can obviate the need for

fine-tuning the parameters of a bank of image features. Unfortunately, discriminant filters

imply an additional computational burden at run time: rather than extracting a single bank

of features from the image, we are forced to extract a set of feature banks corresponding to

distinct feature bank parameters. It is true that in the case that each of the basis filters φ �

consist strictly of linear convolutions with the image patch– as in Sections 7.4.4 and 7.4.5–

we are able to use the derived α coefficients to linearly combine the φ � ahead of time so that

at run time we only need to convolve the image with a single bank of m filters. However, if

the φ� functions contain nonlinearities– as in Section 7.4.6– then we will need to evaluate

each φ� at each image patch, which can be a computational drain for large numbers of φ � .

Another avenue for future research is biasing the optimization for the vector of combining

coefficients ααα toward sparseness, in other words encouraging as many of the entries in ααα.

It is possible that sparsity-encouraging optimization techniques employed by the machine

learning community for learning sparse kernel machines, for example [112][35], can be

applied to the optimization of sparse ααα.
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7.6 Summary and Conclusions

This chapter presents an approach to texture-based image features based on tuning sets of

image filters. Given an arbitrary set of basis filters and sets of labeled patches containing the

parts, we derive the combining coefficients needed to maximize discrimination between the

filter outputs for the various classes. Initial part classification results on real data and image

filters commonly used in the recognition literature support the validity of this technique.

As opposed to previous approaches, this paper suggests that it is possible to derive useful

image information from a linear combination of sets of basis filters which span a plausible

range of parameter settings, rather than selecting one setting or storing responses to all

possible filters separately. The filters in turn can enable simple classification mechanisms

that do not require much tuning.
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Chapter 8

Conclusions

The theme of this thesis is that solving object recognition as a discrimination problem

makes it easier for us to expand the state of the art in the field and apply existing computer

vision tools to new scenarios.

Our developments in shape-based localization show that discriminative techniques can

facilitate shape-based recognition to scenes with busy, confusing backgrounds. To our

knowledge, none of the shape-based algorithms presented thus far in the field are able to

localize objects like the ladder, stool, chair, or cart in such complex images as the ones

we experiment on. Previously presented techniques have serious difficulty in designing

rich, informative edge features which are able to differentiate the object from the clutter;

here, by tuning our edge-based features so that they directly discriminate between object

and background, we provide a solution to that problem. Moreover, prior shape-based tech-

niques have difficulties in setting parameters on their part classification and aggregation

modules; we provide a solution which sets these parameters automatically by focusing on

how the parameter settings lead to discrimination between object and clutter. Finally, the

computational architecture of our technique leads to efficient performance at training and

run-time.

Our contribution in texture-based image features illustrate that discriminative tech-

niques can make the application of existing computer vision tools to object recognition

simpler. The design parameters of banks of image convolutional image filters can be diffi-

cult to set by hand for recognition tasks; therefore, we provide a solution which combines

sets of filters so that they discriminate well between object portions of the image and back-

ground portions. The design parameters of the classifiers which categorize filter responses
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can be difficult to set as well; here, we show that discriminative image features can amelio-

rate this problem in some settings.

As we describe in Chapters 5 and 7, the main limitations to our approach are related to

computational complexity and overfitting. With regard to overfitting, the problem is that

we want to have it both ways– we want the simplicity of being able to optimize object

recognizers so that they discriminate specific object images from specific clutter images,

but we also want our recognizers to perform well on arbitrary, novel images. We see in

the experiments in Chapter 5 that if the divergence between training and test images is

large, recognition performance suffers. However, in Chapter 3 we see examples in which

moderate divergence leads to only a modest reduction in performance. Our experiments

involved a relatively modest number of training images (on the order of hundreds); we are

confident that with a large amount of training data, our discriminative techniques for shape-

and texture-based localization will generalize well to a range of novel images.

However, the idea of large amounts of training data brings us to our second limitation,

which is computational complexity. First, as discussed in Section 6.3.3, we need to provide

tools for our algorithms to efficiently sift through billions of training examples representing

pixels in tens of thousands of images to pick which examples are unique and informative.

And second, as discussed in Section 7.5, our approaches assume that the training data is

hand-labeled, so we need to formulate algorithms for quickly labeling training images or

incorporating semi-labeled or unlabeled images.

Addressing these limitations will help us to apply the algorithms of this thesis to larger

image sets, more complex scenes and objects, and more sources of image variability. It is

our belief that the framework we present here takes an important step toward the overall

problem of recognizing realistic objects in real images of ever-increasing complexity.
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