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ABSTRACT

The fluorescence microscope is routinely
used to study cellular structure in many bio-
medical research laboratories and is in-
creasingly used as a quantitative assay sys-
tem for cellular dynamics. One of the major
causes of image degradation in the fluores-
cence microscope is blurring. Deconvolu-
tion algorithms use a model of the micro-
scope imaging process to either subtract or
reassign out-of-focus blur. A variety of al-
gorithms are now commercially available,
each with its own characteristic advantages
and disadvantages. In this article, we re-
view the imaging process in the fluores-
cence microscope and then discuss how the
various deconvolution methods work. Final-
ly, we provide a summary of practical tips
for using deconvolution and discuss imag-
ing artifacts and how to minimize them.

INTRODUCTION

Deconvolution is a computational
technique for improving the contrast
and resolution of digital images. It in-
cludes a suite of methods that seek to
remove or reverse the blurring present
in microscopes images caused by the
limited aperture of the microscope ob-
jective lens. Nearly any image acquired

on a digital fluorescence microscope
can be deconvolved. In addition, new
applications to transmitted light images
are now available (29). Three-dimen-
sional images made up of a series of op-
tical sections are particularly well suited
for improvement by deconvolution.

Deconvolution is often described as
an alternative to confocal microscopy.
This is not strictly true since confocal
images can themselves be deconvolved.
However, most users apply deconvolu-
tion to images recorded on a standard
“wide-field” fluorescence microscope.
This approach yields images of compa-
rable resolution to a confocal micro-
scope (49). In fact, confocal micro-
scopy and wide-field-deconvolution
microscopy both work by removing
blur, but they do so by opposite means.
Confocal microscopy prevents out-of-
focus blur from ever being detected, by
placing a pinhole between the objective
lens and the detector, through which
only in-focus light can pass (30).
Wide-field microscopy allows blurred
light to reach the detector; deconvolu-
tion then attempts to either subtract
blurred light from the image or reassign
it back to its source (1,37,53). Confocal
microscopy is especially well suited for
thick specimens such as embryos or tis-
sues, while wide-field-deconvolution
microscopy has proven to be a power-
ful method for imaging samples requir-
ing low light levels, such as living cells
bearing fluorescently labeled proteins
and nucleic acids (9,18,24,35,46,54).

Our goal in this article is to intro-
duce deconvolution to the working bi-
ologist at a level that is more practical
than theoretical, but more rigorous than
a user’s manual. Because of space con-
straints, we focus on the application of
deconvolution to 3-D wide-field images
of fluorescent biological specimens.

Causes of Image Degradation

Image degradation can be divided
into four independent phenomena:
noise, scatter, glare, and blur (7,56).
The principal task that deconvolution
sets for itself is to remove blur. Decon-
volution algorithms can and do remove
noise, but this is a relatively simple as-
pect of what they do.

Noise is a quasi-random disarrange-
ment of detail in the image, which in its
most severe form has the appearance of
“white noise” or “salt-and-pepper
noise”, the kind of signal degradation
seen in broadcast television during bad
reception. We call it “quasi-random”
because the statistical distribution of
noise can be predicted if the mechanics
of its source are known. In digital mi-
croscopy, the source is either the signal
itself (so-called “photon shot noise”) or
the digital imaging system. The me-
chanics of both sources are understood;
therefore, the statistical distribution of
noise is known. Signal-dependent noise
is characterized by a Poisson distribu-
tion, while imaging system noise usual-
ly follows a Gaussian distribution.
Thus, noise in the image can be re-
moved by appropriate filters, and most
deconvolution software includes “pre-
processing” routines that accomplish
this. The topic of noise in digital mi-
croscopy is discussed elsewhere
(31,39–41).

Scatter is a random disturbance of
light caused by its passage through re-
gions of heterogeneous refractive index
within a specimen. The effect of scatter
is a truly “random” disarrangement of
the image detail. No completely satis-
factory method exists yet to predict
scatter in a given specimen. However,
we can say that the degree of scattering
depends on the thickness of the speci-
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men and on the optical properties of the
specimen material. The thicker the
specimen, the more scatter there is; and
the more heterogeneous the refractive
index of the specimen material, the
more scatter there is.

Glare, like scatter, is a random dis-
turbance of light, but occurring in the
lenses or filters of the imaging system
rather than within the specimen. The
level of glare in the modern microscope
is minimized by the use of lenses and
filters with antireflective coatings.

Blur is a nonrandom spreading of
light caused by its passage through the
imaging system and lenses. The cause
of blur is diffraction, and an image
whose resolution is limited only by blur
is considered “diffraction-limited” (7,
31,36). This is an intrinsic limit of any
imaging system and is the determining
factor in assessing the system’s resolu-
tion limit. Optical theory includes so-
phisticated models of blur, and, with
modern computer power, we can apply
such a model to digital images-this is
the basis for deconvolution. Because of
its importance in deconvolution, the
theoretical model of blur will be intro-
duced in greater detail below. However,
we emphasize here that all imaging
systems cause blur independently of
whatever other forms of image degra-
dation are caused by the specimen or
the electronics. It is precisely this inde-
pendence of blur from other types of
degradation that makes it possible to re-
move blur by deconvolution.

Bohren (6) points out that scatter,
glare, and blur have the same physical
cause, namely the interaction of light
and matter. However, the composition
and arrangement of molecules in a giv-
en material (whether glass, water, or
protein) gives each material its particu-
lar optical properties. For our purposes,
what distinguish scatter, glare, and blur
are the location where they occur and
the possibility of generating a mathe-
matical model for them. Because scat-
ter is a local, irregular phenomenon oc-
curring in the specimen, it is difficult to
model [although see Kam et al. (33) for
an elegant treatment of this problem].
By contrast, because blur is a function
of the microscope system and principal-
ly the objective lens, it can be modeled
with relative simplicity. Such a model
makes it possible to reverse the blurring

process, and deconvolution uses this
model to reverse or remove blur.

The Point-Spread Function

The model of blur that has evolved
in theoretical optics is based on the
concept of a point-spread function
(PSF). This concept is very important
to deconvolution and should be clearly
understood to avoid imaging artifacts.
Inoué and Spring (31) and Keller (36)
provide good introductions to the con-
cept of the PSF that are recommended
for further detail. Several Web sites
also provide tutorial information on the
PSF, deconvolution, and 3-D micro-
scopy generally. Two sites we recom-
mend are http://www.microscopy.fsu.
edu/primer/ and http://3Dmicroscopy.
wustl.edu/~josec/tutorials/.

To understand the PSF, consider an
infinitely small “point source” of light.
Because the imaging system collects
only a fraction of the light emitted by
this point, it cannot focus this light into
a perfect 3-D image of the point. In-
stead, the point appears widened and
spread into a 3-D diffraction pattern.
The 3-D diffraction pattern of an ideal
point source of light is the PSF.

Depending on the imaging modality
being used (wide-field, confocal, trans-
mitted light), the PSF has a different
shape. In a wide-field fluorescence mi-
croscope, the shape of the PSF is an ob-
long football of light surrounded by a
flare of widening rings. To describe it
in three dimensions, we apply a coordi-
nate system of three axes (x, y, and z)
where x and y are parallel to the focal
plane of the specimen and z is parallel
to the optical axis of the microscope. In
this case, the PSF looks like a set of
concentric rings in x-y, and it looks like
an hourglass in x-z or y-z (Figure 1A).
An x-y image through the center of the
wide-field PSF looks like a set of con-
centric rings: this is the “Airy disk” of
classical light microscopy.

How does the PSF affect image for-
mation in a microscope? In the theoreti-
cal model of image formation, the PSF
is considered the basic unit of any im-
age. The PSF is to the image what the
brick is to the house. The best an image
can ever be is an assembly of PSFs, and
increasing magnification will not
change this. A noted theoretical optics

textbook explains, “It is impossible to
bring out detail not present in the prima-
ry image by increasing the power of the
eyepiece, for each element of the prima-
ry image is a small diffraction pattern,
and the actual image, as seen by the
eyepiece, is only the ensemble of the
magnified images of these patterns” (7).

As an example, consider a popula-
tion of tiny fluorescent beads mounted
under a cover slip. An in-focus image
of this specimen will show a cloud of
dots, each of which, when examined at
high resolution, is actually a disk sur-
rounded by a tiny set of rings (i.e., an
Airy disk) (Figure 1B, 0 µm). If this
specimen is brought out of focus slight-
ly, a large set of concentric rings will
appear where each dot was in the fo-
cused image (Figure 1B, 1 µm). If you
collect a 3-D image of this specimen,
then you will record a PSF at each
bead. The PSF describes what happens
to each point source of light after it
passes through the imaging system.

The blurring process described
above is mathematically modeled as a
convolution. The convolution operation
describes the application of the PSF to
every point in the object: light emitted
from each point in the object is con-
volved with the PSF to produce the im-
age. This convolution causes points in
the object to become blurred regions in
the image. The brightness of every
point in the image is linearly related by
the convolution operation to the fluo-
rescence of each point in the object
(5,22). Since the PSF is 3-D, blurring
from the PSF is an inherently 3-D phe-
nomenon. The image from any focal
plane contains blurred light from points
located in that plane mixed with blurred
light from points in other focal planes.

The situation can be summarized by
saying that the image is formed by a
convolution of the object with the PSF.
Deconvolution reverses this process
and attempts to reconstruct the object.

Aberrations in the PSF

The PSF can be defined either theo-
retically using a mathematical model of
diffraction (20) or empirically by ac-
quiring a 3-D image of a fluorescent
bead (Figure 1A). A theoretical PSF
generally has axial and radial symme-
try [i.e., it is symmetric above and
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below the x-y plane (axial symmetry)
and rotationally about the z-axis (radial
symmetry)]. An empirical PSF can de-
viate significantly from perfect symme-
try (Figure 1A). This deviation, or aber-
ration, is caused by irregularities or
misalignments in any component of the
imaging system light path, especially
the objective lens but also other lenses,
mirrors, filters, apertures, etc. The
higher the quality of the optical compo-
nents and the better the alignment, the
closer the empirical PSF comes to its
ideal symmetrical shape. Both confocal
and deconvolution microscopy depend
on the PSF being as close to the ideal
case as possible.

Keller (36) provides a survey of all
known types of PSF aberration. The
most common type of aberration, well
known to any professional microscopist,
is spherical aberration. This is an axial
asymmetry in the shape of the PSF, with
a corresponding increase in size, partic-
ularly along the z-axis (Figure 1A). The
result is a considerable loss of resolution
and signal intensity (25). In practice, the
most common cause of spherical aberra-
tion is a mismatch between the refrac-
tive indices of the lens immersion medi-
um and the mounting medium in which
the specimen rests (25,26). We empha-
size the importance of minimizing this
omnipresent aberration. While deconvo-
lution can partially restore lost resolu-
tion (45), no amount of image process-
ing can restore lost signal. See the
“Artifacts and Aberrations” section for
further discussion of this problem.

VARIETIES OF DECONVOLU-
TION ALGORITHMS

Now that we have surveyed a small
amount of optical theory, we proceed to
the business of this article, namely de-
convolution algorithms—what they are
and how they work. We will not review
these algorithms in detail since pub-
lished works already do so (32,37,48,
50,53), but we will explain their basic
principles. We divide the available
deconvolution algorithms into two
classes, “deblurring” and “image
restoration”. Deblurring algorithms are
fundamentally 2-D, because they apply
an operation plane-by-plane to each 2-
D plane of a 3-D image stack. In con-

trast, image restoration algorithms are
properly 3-D because they operate si-
multaneously on every pixel in a 3-D
image stack.

A few more technical terms must be
defined. The object refers to the 3-D
pattern of light emitted by fluorescent
structures in the microscope’s field of
view. The raw image refers to an un-

processed digital image or image stack
acquired from the microscope. Particu-
lar regions within the image are re-
ferred to as features.

Deblurring Algorithms

The algorithms called “nearest-
neighbor”, “multi-neighbor”, “no-neigh-
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Figure 1. Effect of spherical aberration on the PSF. (A) x-z projections of two PSFs showing different
degrees of spherical aberration. The optical axis is parallel to the vertical axis of the image. Left: shows
minimal spherical aberration. Right: shows significant spherical aberration. (Note the axial asymmetry
and widening of the central node along the optical axis in the right-hand image. This leads to degraded
axial resolution and blurring of signal.) In theory, the size of the PSF is infinite, and the total summed in-
tensity of light in planes far from focus is equal to the summed intensity at focus. However, light inten-
sity falls off quickly and eventually becomes indistinguishable from noise. In an unaberrated PSF
recorded with an NA 1.4 oil lens (a typical high-resolution lens), light occupying 0.2 µm2 at the plane of
focus is spread out over 90 times that area at 1 µm above or below focus. In these images, the object is a
0.1-µm (subresolution) fluorescent bead (Molecular Probes, Eugene, OR, USA) mounted in glycerol (RI
= 1.47), with immersion oil of RI = 1.5140 (left) and 1.5220 (right). The images are sections from 3-D
image stacks collected using a DeltaVision wide-field imaging system (Applied Precision, Issaquah,
WA, USA). Objective lens 100×/NA 1.4. Excitation wavelength, 580 nm; emission wavelength, 630 nm.
Scale bar, 1 µm. (B) A population of 0.1-µm beads adhering to the surface of a cover slip, in focus (0
µm), and at 1 µm defocus (1 µm). Imaging parameters are as in panel A. The two images are scaled dif-
ferently to emphasize the out-of-focus rings in the defocused image. Images are used by permission of
©Macmillan Press, 1998.



bor”, or “unsharp masking” are funda-
mentally 2-D. We refer to them here as
“deblurring algorithms”. These algo-
rithms apply an operation plane-by-
plane to each 2-D plane of a 3-D image
stack. For example, the nearest-neighbor
algorithm operates on a plane z by blur-
ring its neighboring planes z ± 1 (using a
digital blurring filter), then subtracting
the blurred planes from z (1,10,48,50).
Multi-neighbor methods extend this
concept to a user-selectable number of
planes. A 3-D stack is processed by ap-
plying the algorithm to every plane in
the stack. In this way, an estimate of the
blur is removed from each plane.

The deblurring algorithms are com-
putationally economical because they
involve relatively simple calculations on
single image planes. However, there are
major disadvantages to these approach-
es. First, noise from several planes is
added together. Second, deblurring al-
gorithms remove blurred signal and
thus reduce signal levels. Third, features
whose PSFs overlap in z may be sharp-
ened in planes where they do not really
belong (i.e., the apparent position of
features may be altered). This problem
is particularly severe when deblurring
single 2-D images because they can
contain diffraction rings or light from
other structures that will then be sharp-
ened as if they were in that focal plane.
Taken together, these findings mean that
deblurring algorithms improve contrast,
but they do so at the expense of decreas-
ing signal-to-noise ratio and may also
introduce structural artifacts.

Two-dimensional deblurring algo-
rithms may be useful in situations when
a quick deblurring is needed or when
computer power is limited. They work
best on specimens that have fluorescent
structures distributed discretely, espe-
cially in the z-axis. However, these al-
gorithms cause artifactual changes in
the relative intensities of pixels; there-
fore, morphometric measurements,
quantitative fluorescence intensity mea-
surements, and intensity ratio calcula-
tions should never be performed after
applying a 2-D deblurring algorithm.

Image Restoration Algorithms

Image restoration algorithms deal
with blur as a 3-D problem. Instead of
“subtracting” blur, they attempt to “re-

assign” blurred light to an in-focus lo-
cation. This is done by reversing the
convolution operation inherent in the
imaging system. If the imaging system
is modeled as a convolution of the ob-
ject with the PSF, then a deconvolution
of the raw image should restore the ob-
ject. However, the object cannot be re-
stored perfectly because of the funda-
mental limitations inherent in the
imaging system and the image-forma-
tion model (1). The best we can do is to
estimate the object given these limita-
tions. Restoration algorithms estimate
the object, following the logic that a
good estimate of the object is one that,
when convolved with the PSF, gives
back the raw image.

An advantage of this formulation is
that convolution operations on large
matrices (such as a 3-D image stack)
can be computed very simply using the
mathematical technique of Fourier
transformation. If the image and PSF
are transformed into “Fourier space”,
the convolution of the image by the
PSF can be computed simply by multi-
plying their Fourier transforms. The re-
sulting Fourier image can then be back-
transformed into real 3-D coordinates.
(For an introduction to Fourier trans-
forms in optics, see Reference 22.)

Inverse Filters

The first image deconvolution algo-
rithms to be developed were “inverse
filters”. Such filters, along with their
cousins the “regularized inverse filters”,
have been used in electronic signal pro-
cessing since the 1960s and were ap-
plied to images in the 1970s (10). In
image-processing software, these algo-
rithms go by a variety of names includ-
ing “Wiener deconvolution”, “Regular-
ized Least Squares”, “Linear Least
Squares,” and “Tikhonov-Miller regu-
larization” (10,37,48,55).

An inverse filter takes the Fourier
transform of an image and divides it by
the Fourier transform of the PSF. Since
division in Fourier space is equivalent
to deconvolution in real space, this is
the simplest way to reverse the convo-
lution that produced the blurry image.
The calculation is rapid, about as fast as
the 2-D deblurring methods discussed
above. However, the utility of this
method is limited by noise amplifica-

tion. During division in Fourier space,
small noise variations in the Fourier
transform are amplified by the division
operation. The result is that blur re-
moval is traded against a gain in noise.
Also, an artifact known as “ringing”
can be introduced (see “Aberrations
and Artifacts” section).

Noise amplification and ringing can
be reduced by making some assump-
tions about the structure of the object
that gave rise to the image. For in-
stance, if we assume that the object was
relatively smooth, we can eliminate
noisy solutions with rough edges. This
approach is called regularization. A
regularized inverse filter can be thought
of as a statistical estimator that applies
a certain kind of “constraint” on possi-
ble estimates, given some assumption
about the object: in this case, smooth-
ness. A constraint on smoothness en-
ables the algorithm to select a reason-
able estimate out of the large number of
possible estimates that can arise be-
cause of noise variability.

Regularization can be applied in one
step within an inverse filter (42), or it
can be applied iteratively. The result is
usually smoothed (i.e., stripped of
higher Fourier frequencies). Much of
the “roughness” being removed here
occurs at Fourier frequencies well be-
yond the resolution limit and, therefore,
does not eliminate structures recorded
by the microscope. However, since
there is a potential for loss of detail,
software implementations of inverse
filters typically include an adjustable
parameter that allows the user to con-
trol the tradeoff between smoothing
and noise amplification (37).

Constrained Iterative Algorithms

To improve the performance of in-
verse filters, a number of other 3-D al-
gorithms can be used to restore images
(48,50,53). These methods are called
“constrained iterative algorithms”.
They work in successive cycles and are
therefore called “iterative”. They also
usually apply constraints on possible
solutions. These constraints not only
help to minimize noise or other distor-
tion but also increase the power to re-
store blurred signal.

A typical constrained iterative algo-
rithm works as follows. An estimate of
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the object is made (this is usually the
raw image itself). The estimate is con-
volved with the PSF, and the resulting
“blurred estimate” is compared with
the raw image. This comparison is used
to compute an error criterion that repre-
sents how similar the blurred estimate
is to the raw image. This error criterion
(or “figure of merit”) is then used to al-
ter the estimate in such a way that the
error is reduced. A new iteration then
takes place: the new estimate is con-
volved with the PSF, a new error crite-
rion is computed, etc. The best estimate
will be the one that minimizes the error
criterion: therefore, as long as the error
criterion has not been minimized, each
new estimate is blurred again, an error
criterion is computed, etc. This process
is repeated until the error criterion is
minimized or reaches a defined thresh-
old. The final restored image is the ob-
ject estimate at the last iteration.

Most algorithms incorporate con-
straints on the range of allowable esti-
mates. One commonly used constraint
is smoothing or regularization, as dis-
cussed above. As iterations proceed, the
algorithm will tend to amplify noise, so
most implementations suppress this
with a smoothing or regularization fil-
ter. Another common constraint is
“nonnegativity” (1). This means that
any pixel value in the estimate that be-
comes negative during the course of an
iteration is automatically set to zero.
(Pixel values can become negative, ei-
ther because of Fourier transformation
or a subtraction operation in the algo-
rithm.) The nonnegativity constraint is
realistic because an object cannot have
negative fluorescence. It is essentially a
constraint on possible estimates given
our knowledge of the object’s structure.
Other types of constraints include
“boundary constraints” on pixel satura-
tion, constraints on noise statistics, and
other statistical constraints.

Classical algorithms. The first ap-
plications of constrained iterative de-
convolution algorithms to microscope
images were based on the Jansson-Van
Cittert (JVC) algorithm, a procedure
developed by Van Cittert (19) for use in
spectroscopy and adapted by Jansson
(32). This algorithm was modified by
Agard for application to digital micro-
scope images (1,21). Various imple-
mentations of Agard’s modified algo-

rithm are currently marketed by
Vaytek, Intelligent Imaging Innova-
tions, Applied Precision, Carl Zeiss,
and Bitplane. In addition, Carrington
and co-workers developed a regular-
ized least squares minimization method
(8,17) that has been marketed by
Vaytek and Scanalytics. These algo-
rithms use an additive or multiplicative
error criterion to update the estimate at
each iteration (37,48,50,53).

Statistical algorithms. Another
family of iterative algorithms uses
probabilistic error criteria taken from
statistical theory (12,27,48). “Likeli-
hood”, a kind of reverse of probability
(16), is used in the maximum likelihood
estimation (MLE) and expectation
maximization (EM) algorithms imple-
mented by SVI, Bitplane, ImproVision,
Carl Zeiss, and Autoquant. MLE is a
popular statistical tool with applications
in many branches of science. A related
statistical measure, maximum entropy
(ME—not to be confused with EM) has
been implemented in image deconvolu-
tion by Carl Zeiss.

Statistical algorithms are more com-
putationally intensive than the classical
methods and can take significantly
longer to reach a solution (see Refer-
ence 48 for an estimate). However, they
may restore to a slightly higher degree
of resolution than the classical algo-
rithms. They also have the advantage
that they impose constraints on the ex-
pected noise statistic (i.e., a Poisson or a
Gaussian distribution). As a result, these
algorithms have a more subtle noise
policy than simply regularization, and
they may give better results on noisy
images. However, the choice of an ap-
propriate noise statistic may depend on
the imaging condition, and some com-
mercial software packages are more
flexible than others in this regard.

Blind deconvolution. Blind decon-
volution is a relatively new method that
greatly simplifies the use of deconvolu-
tion for the non-specialist. Currently,
only Autoquant implements this
method. It was developed by altering
the MLE algorithm so that not only the
object but also the PSF is estimated
(27). In this approach, an estimate of
the object is made. This estimate is
convolved with a theoretical PSF calcu-
lated from optical parameters of the
imaging system. The resulting blurred

estimate is compared with the raw im-
age, a correction is computed, and this
correction is used to generate a new es-
timate (as explained above). This same
correction is also applied to the PSF,
generating a PSF estimate. In further it-
erations, the PSF estimate and the ob-
ject estimate are updated together.

Blind deconvolution works well not
only on high-quality images but also on
noisy or spherically aberrated images.
It begins with a theoretical PSF but
adapts it to the specific data being de-
convolved. In this regard, it spares the
user from the difficult process of ac-
quiring a high-quality empirical PSF
(26,37). Also, because it adjusts the
PSF to the data, it can partially correct
for spherical aberration. However, this
computational correction should be a
last resort—it is preferable to minimize
spherical aberration during image ac-
quisition (see “Aberrations and Arti-
facts” section).

Deconvolution of confocal and
multi-photon images. As one might ex-
pect, it is also possible to restore confo-
cal or multi-photon microscope images.
The combination of confocal micro-
scopy and deconvolution improves reso-
lution beyond what is attainable with ei-
ther technique alone (49). However, the
major benefit of deconvolving a confo-
cal image is not so much the reassign-
ment as the averaging of out-of-focus
light. This results in decreased noise
(e.g., see Reference 13). Deconvolution
of multiphoton images has also been
used to successfully remove image arti-
facts and improve contrast (52). In all of
these cases, care must be taken to use
the appropriate PSF, especially if the
confocal pinhole is adjustable. The in-
terested reader is referred to a previous
discussion on the implementation of de-
convolution algorithms for laser-scan-
ning microscopes (28).

Implementation. Processing speed
and quality is dramatically affected by
how a given deconvolution algorithm is
implemented in software. The algo-
rithm can be implemented in ways that
reduce the number of iterations and ac-
celerate convergence to a stable esti-
mate. For example, the unoptimized
JVC algorithm usually requires 50–100
iterations to converge to an optimal es-
timate (2,48,50). By prefiltering the
raw image to suppress noise and cor-
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recting with an additional error criteri-
on on the first two iterations, the algo-
rithm converges in only 5–10 iterations.
In addition, a smoothing filter is usual-
ly introduced every five iterations to
curtail noise amplification.

When using an empirical PSF, it is
critical to use a high-quality PSF with
minimal noise. No deconvolution pack-
age we know of uses the “raw” PSF
recorded from the microscope. Instead,
the packages contain preprocessing rou-
tines that reduce noise and enforce radi-
al symmetry by averaging the Fourier
transform of the PSF. Many packages
also enforce axial symmetry in the PSF
and thus assume the absence of spheri-
cal aberration. These steps reduce noise
and aberrations and make a large differ-
ence in the quality of restoration.

Another aspect of implementation is
preprocessing of the raw image, via
routines such as background subtrac-
tion, flatfield correction, bleaching cor-
rection, lamp jitter correction, etc.
These operations can improve the sig-
nal-to-noise ratio and remove certain
kinds of artifacts. Most available pack-
ages include such operations, and the
users’ manuals of the packages should
explain them. We will return to them
below in our discussion of artifacts.

Other implementation issues concern
data representation. Images can be di-
vided into subvolumes or represented as
whole data chunks. Individual pixel val-
ues can be represented as integers or as
floating-point numbers. Fourier trans-
forms can be represented as floating-
point numbers or as complex numbers.
In general, the more faithful the data
representation, the more memory and
processor time it requires. Thus, there is
a tradeoff between the speed of compu-
tation and the quality of restoration.
These issues are discussed below in the
“Artifacts and Aberrations” section.

Summary. Iterative restoration algo-
rithms differ from both deblurring algo-
rithms and confocal microscopy in that
they do not remove out-of-focus blur
but instead reassign it. In this way, out-
of-focus signal is used rather than
thrown away. After restoration, pixel in-
tensities within fluorescent structures
increase. However, the total summed in-
tensity of each image stack stays the
same, as intensities in formerly blurred
areas diminish. Blur surrounding details

of the object is moved back into focus,
resulting in sharper definition of object
from background, better contrast, and
improved signal-to-noise ratio. 

These properties are shown in Figure
2. Restoration improves image contrast
and subsequently allows better resolu-
tion of objects, without the introduction
of noise that occurs in deblurring meth-
ods (Figure 2A). Perhaps more impor-
tantly for image analysis and quantita-
tion, the sum of the fluorescence signal
in the raw image is identical to that in
the deconvolved image. When properly
implemented, image restoration meth-
ods preserve total signal intensity but
improve contrast by adjustment of sig-
nal position (Figure 2B). Therefore,
quantitative analysis of restored images
is possible and, because of the improved
contrast, often desirable.

When used in conjunction with
wide-field microscopy, iterative restora-
tion methods are light efficient. This is
most valuable in light-limited applica-
tions such as high-resolution fluores-
cence imaging, where objects are
typically small and contain few fluoro-
phores (15,18), or in live-cell fluores-
cence imaging, where exposure times
are limited by the extreme sensitivity of
live cells to phototoxicity (9,24,46,54).

PERFORMANCE ISSUES

Now that we have explained the
principles on which deconvolution al-
gorithms are based, we can offer some
technical insights on how they perform
and how best to compare them.

Resolution and Contrast
Improvement

What kind of quantitative improve-
ment in image quality can be expected
from iterative deconvolution? We have
attempted to answer this by measuring
the size and brightness, before and after
deconvolution, of a test object of
known size (Figure 3). The object is a
0.1-µm (subresolution) fluorescent
bead. This is a nearly ideal specimen-
there is no out-of-focus signal coming
from any other object, and all aberra-
tions were carefully minimized before
data collection. In the raw image, the
bead measures 0.7 µm along the z-axis;

in the deconvolved image, it measures
0.45 µm (Figure 3A). This is a modest
improvement in resolution, which may
reveal a biologically interesting struc-
ture in only a limited number of cases.

However, the major change in the
image is shown in Figure 3B. This plot
shows the integrated pixel intensity—
the sum of all pixel values in each focal
plane—as a function of focal depth.
There is significant out-of-focus inten-
sity at 2 µm away from the bead before
processing. Restoration by iterative de-
convolution moves the majority of the
out-of-focus intensity back to its focal
plane of origin. The result is a signifi-
cant improvement in image contrast,
making it easier to resolve and distin-
guish features in the image.

Comparisons between Algorithms

Which iterative deconvolution algo-
rithm gives the best restoration? A
number of Web sites compare the re-
sults of different algorithms, but these
comparisons can be misleading for a
variety of reasons. First, algorithms are
often compared using images of syn-
thetic spherical objects (such as the
bead in Figure 3) or even computer-
generated images of theoretical objects.
The relationship between performance
with such test objects and performance
with real biological specimens is not
straightforward. Furthermore, unless
the comparison is done quantitatively,
with objects of known size, it is hard to
know whether a more pleasing result is
really more accurate. For instance, the
algorithm might eat away the edges of
features, making them look sharper but
confounding measurements.

In addition, algorithm comparisons
are usually published by biased parties
with an interest in the result of the com-
parison. Frequently, these parties com-
pare an algorithm whose implementa-
tion they have developed and optimized
over many years, with a non-optimized
algorithm they have implemented
straight out of the book. However, as
noted above, big differences in speed,
stability, and resolution improvement
can be attributed to implementation and
optimization of the algorithm. There-
fore, the only fair comparison is be-
tween realized software packages,
rather than between algorithms.
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We recommend that you, the poten-
tial buyer of deconvolution software,
should compare the performance of
various software packages on your own
data. Unfortunately, this may require a
certain amount of determination. To
compare images restored by different
packages, you will need to make sure
the sales representative saves your im-
ages in a consensus file format because,
otherwise, each software company will
save to its own proprietary file format,
which often cannot be opened by com-
petitors’ software. Currently, the format
with the widest circulation is a stack of
sequentially numbered TIFF files, each
representing a focal plane (not a projec-
tion!) of the 3-D image. You will also
need a few example image files and
PSF files that you can run through dif-
ferent packages. If you do not have ex-
perience collecting PSF files, you may
want to gain some before testing decon-
volution software that requires an em-
pirical PSF. It is better to test with your
own images and PSFs because the
preparation you use, along with the
lens, magnification, noise level, signal
intensity, spherical aberration, etc., will
affect the quality of deconvolution
tremendously.

Speed and Memory Usage

Increasing processor speed, RAM,
and bus speed all increase the speed of
deconvolution. During deconvolution, a
number of large arrays representing dif-
ferent forms of the image are stored si-
multaneously in RAM and are moved
around inside the computer via the bus.
As a result, RAM is critical for the rapid
processing of 3-D images, as is bus
speed. As a rule of thumb, your comput-
er should have at least three times as
much RAM as the size of the image you
wish to deconvolve. Also, computers
with fast buses perform much better,
even with nominally slower processors.

The size of an image file is usually
reported by the operating system. How-
ever, if in doubt, it can be calculated by
multiplying the total number of pixels
in the image by the number of
bytes/pixel (“bit depth”). The bit depth
is originally set by the camera, which
may produce 8, 10, 12, or 16 bits/pixel.
Once the image is acquired, the bit
depth is determined by your software

and computer system (almost always it
will be 8 or 16 bit; 8 bits = 1 byte). In a
multicolor image, each color must be
stored and deconvolved separately, so
one must be careful to get the bit depth
for the whole image, not just for one
color channel. An example: a 3-D
stack, where each plane is 512 x 512
pixels, containing 64 optical planes,
with three colors at 8 bits/pixel (= 1
byte/pixel) measures 512 × 512 × 64 ×
3 × 1 = 50 MB. The image file header
may add slightly to this size.

ARTIFACTS AND ABERRATIONS

After deconvolution, the restored
image may include apparent artifacts
(e.g., striping, ringing, or discontinuous
cytoskeletal staining). Sometimes these
problems are related to data representa-
tion and will not occur with a different
algorithm or software package. They
can also occur when processing para-
meters are not set appropriately for the
raw image. Finally, artifacts are often
not caused by computation, but by his-
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Figure 2. Comparison of deblurring and restoration methods. Data from a 3-D image stack contain-
ing 70 optical sections, each separated by 0.2 µm, recorded using same apparatus as in Figure 1. The ob-
ject is a XLK2 cell fixed with 3.7% formaldehyde, stained with mouse anti-tubulin and Cy5-conjugated
donkey anti-mouse IgG.) (A) A single focal plane from the 3-D stack is shown before any processing
(Original Data), after deblurring by a nearest-neighbor algorithm (Nearest Neighbor), and after restora-
tion by constrained iterative deconvolution (Restored) using the DeltaVision softWoRx ) (Applied Pre-
cision) deconvolution software. Both deblurring and restoration improve contrast, but the signal-to-noise
ratio is significantly lower in the deblurred image than in the restored image. Scale bar, 2 µm. Arrow
shows the position of the line plot presented in panel B. (B) Plot of pixel brightness values along a hori-
zontal line shown by the arrow in panel A. Original data (gray line), deblurred (thin black line), restored
(thick black line). Deblurring (or any other 2-D filter) causes a significant loss of pixel intensity all across
the image, whereas restoration causes a gain of intensity in areas of detail.



tology, optics, or electronics. When try-
ing to diagnose the cause of an artifact,
the first step to take is a careful compar-
ison of the raw image with the decon-
volved image. If the artifact is visible in
the raw image, then it must be caused
by factors upstream from deconvolution
(i.e., by specimen preparation, optics,
or electronics). By adjusting the con-
trast and brightness of the raw image,
you can sometimes detect an artifact
you would not have noticed initially. If
the artifact is not detectable in the raw
image, then some aspect of deconvolu-
tion is implicated. In this case, it may be
useful to compare the results of decon-
volution by different kinds of algo-
rithms [e.g., an inverse filter versus a
constrained iterative algorithm (35)].

The PSF

The quality of the PSF is critical to
the performance of a deconvolution
algorithm. A noisy, aberrated, or im-
properly scaled PSF will have a dispro-
portionate effect on the results of de-
convolution. This is especially true for
the iterative methods because the PSF
is repeatedly applied. In all cases, the
distribution and extent of blurred light
in the raw image must match the PSF. If
a mismatched PSF is used, then arti-
facts may result or restoration quality
may diminish. In the next sections, we
discuss common problems with the
PSF and ways to correct them.

Theoretical versus Empirical PSFs

In many deconvolution packages,
the user can choose either a theoretical
or an empirical PSF for image restora-
tion. In general, results are better if an
empirical PSF is used. Procedures for
acquiring an empirical PSF can be
found in (26,37). There are several rea-
sons not to preferentially use a theoreti-
cal PSF. First, although good theoretical
models for the PSF exist (20), they are
not perfect models, and an empirical
PSF contains information not available
in theoretical models. Second, the theo-
retical PSF available in commercial
software packages generally assumes
perfect axial and rotational symmetry:
this means it may misfit the distribution
of blur in the raw image. This problem
is most serious at high resolution [e.g.,
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Figure 3. Restoration significantly improves contrast and modestly improves resolution. Data from
image stacks of a subresolution fluorescent bead (sample and data collection as in Figure 1A, left). Dot-
ted line, raw image. Solid line, image restored using constrained iterative deconvolution as in Figure 2.
For graphical purposes, each intensity value has been normalized to the maximum value of its own image
stack. Without such normalization, data from the raw image would barely be visible on the graph because
pixel intensities near focus are so much brighter in the restored image than in the raw image. (Nonethe-
less, the total integrated intensity of each image stack is the same in both cases.) (A) To quantify the im-
provement in resolution, we measured the pixel intensities on a line parallel to the optical axis through
the middle of the bead, before and after restoration. Each pixel intensity is normalized to the minimum
and maximum values of its own image stack. Pixel intensity is plotted as a function of distance along the
z-axis from the center of the bead (0 µm). The FWHM of the z-axis intensity profile is 0.7 µm in the raw
image and 0.45 µm in the restored image. (The actual object measures 0.1 µm.) This modest increase in
resolution in the restored image will only rarely reveal a biological structure that was not visible in the
raw image. (B) To quantify the improvement in contrast, we summed all pixel intensities in each focal
plane of the raw and restored image stacks. The summed intensity of each plane is normalized to the min-
imum and maximum values of its image stack for comparison. Summed intensity is plotted as a function
of focal (z-axis) distance from the center of the bead (0 µm). Restoration causes a movement of signal
intensity from out-of-focus volume to in-focus, resulting in a major improvement in contrast and signal-
to-noise ratio. However, the integrated intensity of the whole image (i.e., the sum of the summed intensi-
ties of each plane) is the same in the raw and restored images.



numerical aperture (NA) 1.2–1.4],
where small manufacturing variations
in the lens can cause minor aberrations
in the symmetry of the PSF (36,45). A
theoretical PSF does not reflect these
lens-specific variations and yields infe-
rior deconvolution results. Furthermore,
an empirical PSF can be helpful in se-
lecting a lens. Aberrations that are hard
to detect when looking at complicated
objects are very clear when examining
the PSF from a single bead. Therefore,
before purchasing a costly new objec-
tive lens, we recommend that you ac-
quire PSFs from several lenses and
choose the one with the most ideal PSF.
Third, an empirical PSF allows you to
measure the performance of your imag-
ing system. Many potential problems
that may occur during an experiment
(e.g., stage drift, lamp flicker, camera
noise, refractive index (RI) mismatches,
temperature changes due to heavy ven-
tilation, etc.) will also occur during PSF
acquisition and be more easily dis-
cernible. Therefore, aberrations in the
empirical PSF suggest ways to improve
your microscopy.

When acquiring an empirical PSF,
care must be taken to match the aberra-
tions of the raw image. Ideally, both the
raw image and the PSF should be free
of aberration, but this is not always pos-
sible. If major aberrations are present in
the raw image, then they should if pos-
sible be matched by aberrations in the
PSF (45). Otherwise, the deconvolved
image may contain errors or be poorly
restored. In addition, if the PSF is noisy,
then substantial noise will appear in the
deconvolved image. To reduce noise
and eliminate minor aberrations, many
packages radially average the PSF or
average the images of several beads to
create a smoother PSF. In addition,
most commercial packages automati-
cally interpolate the PSF sampling in-
terval to match the sampling interval of
the raw image. If this is not the case, the
PSF and raw image must be acquired at
the same sampling interval.

When using a theoretical PSF, the
PSF parameters must be set appropri-
ately. The PSF parameters are imaging
modality, NA, emitted light wavelength
or λ, pixel size, and z-step. These para-
meters affect the size and shape of the
PSF. In general, PSF size increases
with increasing wavelength and with

decreasing NA. (See Appendix on res-
olution criteria.) The pixel size and z-
step parameters are used for scaling the
PSF with respect to the raw image.

If the size and shape of the theoreti-
cal PSF are not appropriate to the raw
image, then artifacts can result for sev-
eral reasons. First, the algorithm inter-
prets the sampling interval of the image
in terms of the PSF size. Second, the
PSF determines the size and shape of
the volume from which blurred light is
reassigned. If this volume does not cor-
respond to the true distribution of blur
in the image, then artifacts result. This
can happen if there is mis-scaling or
aberration of the PSF. It can also occur
if the “real PSF” of the image has an
aberration that is not matched by the al-
gorithm’s PSF.

When using a theoretical PSF, there
are cases where, paradoxically, a better
result may be obtained if the PSF is too
large. A possible explanation is that the
real PSF of the raw image is larger than
expected. This might occur because of
refractive index mismatch, which caus-
es spherical aberration and z-axis scal-
ing. Both phenomena widen the real
PSF in z, making it larger and thereby
lowering the effective NA of the lens. If
this is suspected, then try subtracting a
small increment (e.g., 0.05) from the
NA of the theoretical PSF. In some soft-
ware, a similar result is obtained by set-
ting the z-step of the PSF to be smaller
than the z-step of the raw image.

Normally, the z-step of the PSF
should always be identical to the z-step
of the raw image: this ensures that the
scaling of the PSF is appropriate to the
imaging conditions. With an empirical
PSF, however, it may be possible to ac-
quire a PSF at finer z-resolution than
the raw image. This makes the Fourier
transform of the PSF more detailed and
can benefit restoration. However, this
trick works only if the software can in-
terpolate the image’s sampling interval
and make it correspond to the PSF.
Consult your user manual to determine
how your software handles the PSF.

Spatial Variation of the PSF

Currently, most commercially avail-
able deconvolution packages assume
that the PSF is constant for all points in
the object, a property known as spatial

invariance. Microscope optics general-
ly meet this assumption; however, oth-
er issues such as refractive index gradi-
ents in the specimen material or
mismatch of immersion and mounting
media, cause spatial variations in the
PSF, especially in thick specimens. At
present, all commercial software pack-
ages assume spatial invariance. Howev-
er, increasing computer power may
make it feasible to vary the PSF
through the image in the near future. It
may also become possible to correct
spatial variations in the PSF by using a
transmitted light image to map refrac-
tive index gradients in the specimen
and adjust the PSF accordingly (33).

Spherical Aberration

A notorious kind of PSF aberration,
and one of the most difficult to combat,
is spherical aberration. It involves an
axial asymmetry in the shape of the
PSF, which both increases the “flare”
of the PSF and decreases its brightness.
This is one of the primary causes of de-
graded resolution and signal loss in
both confocal and wide-field mi-
croscopy (25,26). Spherical aberration
can be detected by focusing up and
down through the specimen, looking
for asymmetry in the out-of-focus rings
above and below a brightly fluorescent
point-like detail (Figure 4, Α–D). Alter-
natively, it can be detected in an ac-
quired image stack: when viewing the
stack in x-z or y-z projection, look for
axial asymmetry in the flare of blurred
light around a fluorescent structure. A
third way to detect spherical aberration
is to acquire a PSF image from a fluo-
rescent bead mounted under similar op-
tical conditions as the specimen and to
look for axial asymmetry in the flare of
the PSF.

If the specimen is comparatively
thick (>10 µm), spherical aberration
may be induced gradually as you image
deeper into the specimen. Therefore, a
bead mounted directly under the cover
slip surface may not reveal spherical
aberration. For this reason, some peo-
ple recommend acquiring the PSF im-
age from a bead located within a piece
of tissue (e.g., by soaking the tissue in a
solution of fluorescent beads). Howev-
er, this PSF should not be used for de-
convolution because scatter from the
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tissue will make the PSF noisier.
Spherical aberration is caused by an

imperfection in the light path of the
imaging system. This can be due to de-
fects in the objective lens, but more fre-
quently by mismatches of refractive in-
dex (RI) in the optical media in front of
the lens. Objective lenses are usually
corrected to minimize spherical aberra-
tion but only if they are used with the
proper type of cover slip glass, the
proper cover slip thickness, and the
proper immersion and mounting media.
The optical properties of these materi-
als are essential for the proper focusing
of light by the objective lens.

Quite commonly in biology, the RI
of the immersion and mounting media
are not the same. In these cases, two
distortions may occur: spherical aberra-
tion and a scaling of z-axis distances.
Hell et al. (25) describe both phenome-
na in detail. Both phenomena depend
on focal depth, so features at different
depths will show different amounts of
spherical aberration and z-scaling. Z-
scaling does not affect resolution or
signal intensity: it is simply a linear
scaling of z-axis distance measure-
ments by the ratio of the RIs of the mis-
matched media (25). To correct for this
distortion, z-distances can be multi-
plied by a scalar compensation factor,
and some software packages offer this
feature. On the other hand, spherical
aberration is difficult to correct and,
therefore, may be tempting to ignore.
However, a little attention to this issue
can bring big improvements in image
quality, especially under low-light con-
ditions such as in living cells.

There has been interest in digitally
correcting for spherical aberration by
deconvolving with a spherically aber-
rated PSF (45). This requires deconvo-
lution software that does not automati-
cally preprocess the PSF to make it
axially symmetric. If this is the case,
then one can precisely match the aber-
ration in the image and PSF by having
on hand a “family” of empirical PSFs
with different degrees of spherical
aberration and selecting the most ap-
propriate PSF for a given imaging con-
dition. This type of computational cor-
rection may restore lost resolution to
some extent, but it cannot restore lost
signal. Therefore, a better way to cor-
rect for spherical aberration is to elimi-

nate it beforehand by optical means.
The following are optical methods to

correct for spherical aberration. (i) Us-
ing a “dipping” objective (i.e., one that
goes directly into the mounting medium
without a cover slip). This way the im-
mersion medium and the mounting
medium are one, and no RI mismatch is
possible. Distortion can still occur,
however, because of RI mismatch be-
tween the specimen and the immersion
medium or RI gradients within the spec-
imen itself. (ii) Adjusting the RI of the
immersion medium to compensate for
the RI of the mounting medium (26). If
the specimen is mounted in a medium
of lower RI than glass (e.g., any glyc-
erol- or water-based media), then you
should increase the RI of the immersion
medium. This method allows a relative-
ly aberration-free imaging condition up
to a limited focal depth (10–15 µm from
the cover slip for a NA 1.4 lens observ-
ing a specimen mounted in glycerol).
The RIs of a few common mounting
media are listed by Bacallao et al. (4).
Cargille Laboratories (Cedar Grove, NJ,
USA) supplies a line of “Laser Liquid”
immersion media with specified RIs.
These can be mixed to any desired inter-
mediate value. (iii) Using a specially
corrected objective lens, such as the
high-NA water-immersion lenses now
available for use with cover-slipped
specimens. These lenses have a correc-
tion collar that compensates for RI
variations between the lens and the
specimen. These lenses are expensive
(currently about $10 000). However,
they may provide the only way to elimi-
nate spherical aberration when imaging
deeper than 15 µm into a thick speci-
men. The correction collar on such lens-
es should not be confused with the vari-
able-aperture correction collars found
on less expensive dark-field lenses.

The Sampling Interval

The proper sampling interval in x, y,
and z is important for good deconvolu-
tion results. The standard practice is to
sample twice per resolvable element:
this conforms to the Nyquist sampling
theorem, which states that two samples
per resolvable element are required for
accurate detection of a signal (22). How-
ever, the Nyquist sampling frequency is
really just the minimum necessary for a

reasonable approximation of the real
signal by discrete sampling. A higher
sampling frequency gives better restora-
tion, especially when using 3-D algo-
rithms. In contrast, 2-D deblurring algo-
rithms work best when the sampling rate
is lower in z (i.e., when the spacing be-
tween optical sections is equal to or
greater than the resolvable element).

For fluorescence microscopy the re-
solvable element is often defined using
the Rayleigh criterion (see Appendix).
For example, with the dye FITC (emit-
ting at 520 nm), an NA 1.4 oil lens, and
a mounting/immersion medium with an
RI of 1.51, the resolvable element is
227 nm in x-y and 801 nm in z (accord-
ing to the Rayleigh criterion). To sam-
ple at the Nyquist frequency, the sam-
pling interval should be twice this, or
0.114 µm in x-y and 0.4 µm in z. To
oversample sufficiently, we routinely
sample at 0.07 µm in x-y and 0.2 µm in
z under these conditions.

Of course, these guidelines repre-
sent optimal settings and should be bal-
anced by considering the specific
preparation in question. For example,
the fluorescence signal may be so low
(e.g., in a live cell experiment) that bin-
ning of CCD pixels is required, or
events may occur so quickly that there
is not time to finely sample in z. In such
cases, a suboptimal sampling interval
will be required. Fortunately, restora-
tion algorithms still work quite well un-
der these conditions (9,54), although
some changes in regularization may be
necessary in some algorithms (47).

Ringing and Edge Artifacts

Ringing is an artifact chiefly found
in deblurring or inversion methods, but
it does sometimes occur with iterative
methods. It has the appearance of dark
and light ripples around bright features
of an image (Figure 4, E and F). It can
occur in z and in x-y: in z, it looks like a
shadow in a deeper z-section, outlining
a fluorescent structure.

Ringing is generally caused by the
conversion of a discontinuous signal
into or out of Fourier space (38). A
number of related issues can produce
signal discontinuities and therefore
cause ringing. Discontinuities can occur
at the edges of the image or of subvol-
umes of the image (Figure 4D) or even
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at the edges of bright features (Figure 4,
E and F). Discontinuities can also arise
if the spatial sampling of the raw image
or PSF is too coarse, if the image or
PSF are noisy, or if the PSF size or
shape is inappropriate to the image.

The surest way to avoid ringing is by
proper windowing of the Fourier trans-
form. This is an implementation issue
that some software packages have not
incorporated but is increasingly the
norm. Ringing can also be avoided by
using a finer sampling interval in the
image or PSF, by smoothing the image
or PSF, by careful matching of aberra-
tions in the PSF with those of the image,
or by adjustment of PSF parameters.

Ringing at edges of the image can be
suppressed by simply cutting out the
edges. Many algorithms cut out a “guard
band” of 8–10 pixels or planes around
the entire image. This operation requires
blank space to be left above and below
the fluorescent structures in the image.
Blank space is advisable anyway, be-
cause blurred light from above and be-
low an object can be reassigned and
contribute to the signal for that object.
However, the blank space can be artifi-
cially created, without loss of fidelity,
by adding interpolated planes to the top
and bottom of the image stack. The re-
sulting cost in memory and processing
time can be minimized by performing
the interpolation in Fourier space (2).

Ringing at the edge of subvolumes
is a similar issue (Figure 4D). Usually,
the amount of subvolume overlap can
be increased so as to remove the arti-
fact. Alternatively, if enough RAM is
installed, then the whole image can be
processed as a single volume.

Noise Amplification or 
Excessive Smoothing

Noise amplification has been allud-
ed to already as an artifact caused by
deblurring and inversion algorithms. It
also occurs with iterative algorithms as
repeated convolution operations intro-
duce high-frequency noise. The artifact
appears as a distinctive mottling of the
image that often is constant in every
plane and particularly noticeable in
background areas. It is usually sup-
pressed by a smoothing filter (or regu-
larization or “roughness” filter) (53). If
excessive noise is observed in a decon-
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Figure 4. Examples of artifacts. (A–D) Images of bovine pulmonary endothelial cells from a prepared
slide (Fluocells; Molecular Probes). These cells were fixed, permeabilized, and stained with BODIPY
FL phallicidin (emission max = 512 nm). Images were acquired as described in previous figures, vary-
ing the RI of the immersion oil: (A and B) RI = 1.514; (C and D) RI = 1.524. (A) Raw image (maximum-
intensity projection) without appreciable spherical aberration. (B) The same image after deconvolution.
(C) Raw image of a similar cell with significant spherical aberration (note diffraction rings around points
surrounding the cell). (D) The same image as in panel C after restoration by iterative constrained decon-
volution. Note that a horizontal line is introduced at the edge of a subvolume (arrowhead). This artifact is
not seen in the raw image (C) and is, therefore, not caused by the imaging system. (E and F) Pyramid cell
dendrites from sections of rat visual cortex, fixed and then injected with Lucifer Yellow (emission max =
533 nm). Each image is a single representative optical section from a 3-D stack. (E) Raw image. (F) Af-
ter iterative deconvolution. In this case, significant ringing occurs (dark outline around fluorescent den-
drite; arrowheads), probably because of spherical aberration in the raw image, which is not matched in
the PSF. Note also noise amplification seen as a mottling of background in the deconvolved image. (G)
Detail of a similar sample to panel E before deconvolution (Raw) and after deconvolution by increasing
numbers of iterations (250 and 300). A small feature disappears (black arrow). This type of artifact can
be avoided by correct use of PSF, as described in the text.



volved image, then the first step is to
make sure the PSF is as noise-free as
possible. If this is the case, the next step
is to look at the filters in the algorithm.
If the filters are adjustable by the user,
then try to set the parameters such that
image features larger than the resolu-
tion limit are maintained, while smaller
variations are suppressed. Do not in-
crease smoothing too much because ex-
cessive smoothing will degrade resolu-
tion and contrast.

Disappearing and 
Exploding Features

Perhaps the most annoying artifacts
of deconvolution are an apparent loss of
dim features or the “blowing up” of
very bright ones. These artifacts differ
from excessive smoothing in that they
affect specific features, as opposed to
the image as a whole (Figure 4G). In
such a case, try to compare the effects
of different algorithms on the appear-
ance of the artifact (e.g., inverse filter
vs. iterative algorithms, classical vs. sta-
tistical). If you see the artifact only with
one algorithm, then the cause may be al-
gorithm instability or a specific effect of
the algorithm on a particular specimen
type. If you see the artifact with several
different algorithms, then there are a va-
riety of possible causes. If small, dim
features of the image are disappearing,
then the cause can be a combination of
nonnegativity and smoothing filters.
This is likely if there is excessive noise
in the image or the PSF or if conditions
are favorable to ringing. Noise and ring-
ing can cause negative pixel values so
that the nonnegativity constraint is in-
voked and features are broken up. If this
happens, then the smoothing filter may
smooth away the remaining fragments,
causing the feature to disappear. This
can be avoided by reducing noise in the
image and the PSF (e.g., with longer ex-
posure times or by averaging), by elimi-
nating PSF mismatches (as described
above), and by properly adjusting the
smoothing filter.

If bright features are expanding,
then the cause is probably pixel satura-
tion. When the raw image contains
bright features, restoration will tend to
increase their brightness even further.
However, in very bright features, this
can cause pixel values to exceed the
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highest value representable at a given
bit depth (i.e., these pixels will “satu-
rate”—they will be assigned the maxi-
mum value). The feature will then be-
come very bright, will appear to flatten
out, and may expand in size. This can
be avoided by using a camera and soft-
ware that allow greater bit depth and an
algorithm that internally stores data as
floating point numbers. This increases
memory demands but prevents the oc-
currence of such artifacts.

Specimen-Dependent Artifacts

There have been reports, both infor-
mal and published, of deconvolution ar-
tifacts seen with some kinds of speci-
mens but not with others. In particular,
Karpova et al. have reported that fila-
mentous structures are broken up with
one class of deconvolution algorithms
but not with another (35,37). If a struc-
tural change is observed, then it is al-
ways advisable to compare the decon-
volved and raw images. If close
inspection reveals that a structure evi-
dent after deconvolution does not occur
in the raw image, then make sure that
the PSF parameters are set correctly
and that the PSF is not noisy. If the
problem persists, then the algorithm
may be suspected. In that case, com-
pare the effects of different algorithms
(e.g., inverse vs. iterative, classical vs.
statistical) on the appearance of the ar-
tifact. This will verify whether a partic-
ular specimen is not restored well by a
given algorithm.

If an apparent artifact is visible in
both deconvolved and raw images, then
some aspect of specimen preparation or
optical aberration is implicated. In par-
ticular, immunofluorescence staining is
often discontinuous along cytoskeletal
filaments (actin filaments, microtubules,
and intermediate filaments). Several
causes can contribute to this problem.
One is that cytoskeletal filaments may
be masked by cytoskeleton-associated
proteins, so antibody accessibility is
variable along the filament. Another
cause is that the fixatives used in im-
munocytochemistry often do not faith-
fully preserve filamentous structures.
For example, microtubules may frag-
ment during formaldehyde or methanol
fixation. A more faithful fixative such as
glutaraldehyde can be tried, but at the

expense of antigenicity. Optimal fixation
methods are described and discussed in
the following sources: (4,14,23,44).

Another type of specimen-dependent
artifact derives from RI gradients in the
specimen. These cause lensing effects
in the specimen before light reaches the
objective lens and, therefore, may dis-
tort the image. Some specimens (e.g.,
embryos or thick tissues) have yolk
granules or other organelles whose RI is
significantly different from their sur-
roundings. In addition, there may be RI
gradients in the mounted specimen
caused by heterogeneous mixing of the
mounting medium. (This is particularly
likely if the specimen is mounted in a
medium that it was not previously im-
mersed in.) Computational methods for
correcting such heterogeneities may be
available in the future (33). However, it
will always be best to minimize these
artifacts by thoroughly immersing the
specimen in a mounting medium that is
well matched to the specimen’s own RI
and by adjusting the RI of the immer-
sion medium to compensate for that of
the mounting medium.

Horizontal and Vertical Lines

Probably the most common artifacts
of deconvolution microscopy are hori-
zontal and vertical lines in x, y, and z.
Usually, these lines can be seen in the
raw image when examined carefully,
meaning that they are not caused by de-
convolution but are enhanced by it.
However, lines or bands can also be due
to edge artifacts at the borders between
subvolumes, a form of ringing (dis-
cussed above). In any case, such arti-
facts cannot be mistaken for biological
structures and are easily removed.

Horizontal or vertical lines in the x-
y plane are often due to “column de-
fects” in the CCD chip used to record
the image (31,51). If one pixel in the
read register of the chip has a defect or
if transfer to that pixel is less efficient,
then this will appear as a line perpen-
dicular to the read register. This line is
then enhanced by deconvolution. This
type of problem can be corrected with a
“flat-fielding” correction, also called
“shading” or “background” correction
(11) and is included in most packages.

Vertical lines seen in x-z or y-z
views (called “z-lines”) are due to vari-

ation in the response characteristics of
pixels. Each pixel has a slightly differ-
ent gain and offset from its neighbors.
In extreme cases there are “bad pixels”
whose photon response deviates signif-
icantly from their neighbors. In such
cases, the same pixel systematically de-
viates from its neighbors throughout a
stack of images, leaving a z-line. This
problem can be corrected by flat-field-
ing, or if not, then by special bad pixel
routines that search out bad pixels and
replace them with the mean of their
neighbors (criteria for these are dis-
cussed in Reference 11).

In contrast, horizontal lines in x-z or
y-z views represent whole planes in the
image stack that are uniformly brighter
than their neighbors (11). This problem
is due to fluctuations in the illumination
system: if the arc lamp power output
changes during data collection, then
this variation will be recorded as a sys-
tematic difference in fluorescence in-
tensity between planes. In addition, the
arc in a lamp can wander over the sur-
face of the electrodes, causing time-de-
pendent spatial heterogeneities in the il-
lumination of the specimen. These
events will be accentuated by deconvo-
lution but can be seen in the raw image.
Both problems can be minimized by re-
placing the arc lamp if it is old.

If lamp fluctuations continue to be a
problem even with a new lamp, then a
direct measure of arc lamp power fluc-
tuation combined with a polynomial fit
of summed pixel intensities plane-by-
plane can be used to apply a correction
to the raw image (11). Some form of
this correction is included in most de-
convolution packages. The second
problem, changes in the illumination
pattern due to arc wandering, is hard to
correct by image processing but can be
eliminated by installing a fiber-optic
scrambler between the arc lamp and the
microscope (34).

SUMMARY

Deconvolution algorithms represent
a very powerful tool for the biological
microscopist. Deblurring algorithms
are 2-D methods that remove blur from
images. They produce results quickly,
but at the expense of signal strength
and quantitative accuracy. Image
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restoration algorithms are iterative 3-D
methods that are somewhat slower but
preserve quantitative relationships in
image data. Like any method, deconvo-
lution can produce artifacts if not used
carefully, but close attention to speci-
men preparation and image acquisition
will usually eliminate them.

APPENDIX: RESOLUTION
CRITERIA

Resolution in fluorescence mi-
croscopy is often assessed by means of
an optical unit called the Rayleigh cri-
terion. This criterion was originally for-

mulated for assessing the resolution of
2-D telescope images, but it has spread
into many other areas of optics. It is de-
fined in terms of the minimum resolv-
able distance between two point
sources of light. In a 2-D image, two
point sources are resolvable if their
Airy disks are distinct. According to
the Rayleigh criterion, two Airy disks
are distinct if they are farther apart than
the distance at which the principal
maximum of one Airy disk coincides
with the first minimum of the other
Airy disk (Figure 5). If the point
sources are of equal wavelength, then
their Airy disks have the same diame-
ter, and the Rayleigh criterion is then
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Figure 5. The Rayleigh criterion. Mathematically generated light intensity profiles from two point
sources of light. The profiles can be imagined to represent pixel intensities along a line through the Airy
disc (i.e., the x-y image of the PSF at focus). The Rayleigh criterion occurs when the maximum intensity
of one PSF overlaps with the first minimum of the other. For two points emitting at the same wavelength,
this corresponds to the radius (or peak-to-minimum distance) of the central bright region of a single PSF.
(Adapted from image by Rod Nave, Department of Physics and Astronomy, Georgia State University,
Atlanta, GA, USA. Used by permission.)



equal to the radius of one Airy disk,
measured from its point of maximum
intensity to its first ring of minimum in-
tensity. For monochromatic images of a
given fluorescence wavelength, the
Rayleigh criterion can be estimated us-
ing a standard formula that is found in
many textbooks of optics, including In-
oué and Spring (31):

d =  0.61λ / NA [Eq. 1]

where d is the Rayleigh criterion, λ is
the wavelength of emitted light, and
NA is the numerical aperture of the ob-
jective lens. Note that the smaller the
value of d, the higher the resolution.

This formula can be used to assess
resolution in the image plane, but not
along the optical axis (z-axis). Howev-
er, an adequate formula for the axial
Rayleigh criterion can be deduced us-
ing similar reasoning. The minimum
resolvable axial distance between two
point sources will occur when their axi-
al diffraction patterns are distinct.
However, the axial diffraction pattern
of a point source is not disk-shaped;
rather, it has the hourglass shape or
“flare” of the PSF image in x-z or y-z
planes. Nonetheless, this hourglass
shape has a central bright region, as
does the Airy disk. Therefore, to define
the axial Rayleigh criterion, we can
take the distance from the point of max-
imum intensity to the first point of min-
imum intensity of the central bright re-
gion along the z-axis. This can be
estimated using the following formula:

d =  2λη / (NA)2 [Eq. 2]

This formula was obtained by com-
paring the theoretical distribution of
light intensity near focus given by Born
and Wolf (7) with formulae given by
Inoué (30) and Keller (36).

Notice that this formula includes η,
the RI of the mounting/immersion me-
dia, in the numerator. The mounting
and immersion media are assumed to
have the same refractive index; other-
wise spherical aberration degrades the
resolution. (Note that all of these crite-
ria assume aberration-free imaging
conditions!) It may be tempting to be-
lieve based on this formula that reduc-
ing the RI of the immersion medium
can improve z-resolution. However,
this is a fallacy because the lens NA is
also reduced if η is reduced, and since

z-resolution varies with the square of
NA, the reduction in NA outweighs the
reduction in η, and resolution is worse.
Notice also that x-y resolution varies
only with the first power of NA, where-
as z-resolution varies with the square of
NA. This means that x-y resolution and
z resolution both improve with increas-
ing NA, but z resolution improves more
dramatically.

Z-resolution is closely related but
not identical to “depth of field”. The
depth of field is the thickness of the
slab of specimen, which appears fo-
cused in the image. When looking at a
2-D image, we see a slab of the speci-
men, with a certain thickness, focused
onto a single flat image. Features that
seem equally well in focus in the image
may reside at different depths in the
specimen. The definition of focus is
somewhat subjective, but a standard
“depth of field unit” is usually defined
as half the axial Rayleigh unit (31):

d =  λη / (NA)2 [Eq. 3]

Another criterion that is sometimes
used instead of the axial Rayleigh crite-
rion is the full width half maximum
(FWHM) of the central bright region of
the PSF. Formulae for estimating the
FWHM in confocal microscopy are
given by Art and Goodman (3). These
formulae are identical to those we have
produced above for the Rayleigh crite-
rion in wide-field microscopy. We em-
phasize that these are rough expressions
that give practical estimations. They are
not exact analytical formulae, which
would require vector wave theory.

We would also caution that any res-
olution criterion is not an absolute indi-
cator of resolution, but rather an arbi-
trary criterion that is useful for
comparing different imaging condi-
tions. The Rayleigh criterion applies
specifically to the case when we want
to distinguish two self-luminous ob-
jects. In other contexts, such as differ-
ential interference contrast (DIC),
bright-field, or dark-field microscopy,
other criteria will apply (31). In some
applications such as localization of a
moving object, resolution below the
Rayleigh limit is possible (e.g., Refer-
ence 43). This highlights the fact that
resolution is task dependent and cannot
be defined arbitrarily for all situations.

In addition, resolution also depends

to a great extent on image contrast (i.e.,
the ability to distinguish signal from
background). Think of a picture of
London on a foggy day: even with the
best high-resolution optics, a gray pic-
ture cannot be distinguished from a
gray background. Image contrast in the
biological context depends mostly on
specimen preparation (fixation quality,
antibody penetration, evenness of stain-
ing, background fluorescence, etc.).
Optimizing specimen preparation can
improve resolution much more dramat-
ically and at cheaper cost than optics or
computers. However, assuming a high-
quality preparation, the limit of resolu-
tion for any application is always de-
pendent on the PSF, and the Rayleigh
criterion gives us at least a basic handle
on the size of the PSF.
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